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ABSTRACT 

Many tasks rely on our ability to hold information about a stimulus in mind after 

it is no longer visible and to compare this information with incoming perceptual 

information. This ability relies on a short-term form of memory known as visual working 

memory. Research and theory at the behavioral and neural levels has begun to provide 

important insights into the basic properties of the neuro-cognitive systems underlying this 

form of memory. However, to date, no neurally-plausible theory has been proposed that 

addresses both the storage of information in working memory and the comparison 

process in a single framework. To address these limitations, I have developed a new 

model where working memory is realized via peaks of activation in dynamic neural 

fields, and comparison emerges as a result of interactions among the model’s layers. 

In a series of simulations, I show how the model can be used to capture each of 

the components underlying performance in simple visual comparison tasks—from the 

encoding, consolidation, and maintenance of information in working memory, to 

comparison and updating in response to changed inputs. Importantly, the proposed model 

demonstrates how these elementary perceptual and cognitive functions emerge from the 

coordinated activity of an integrated, dynamic neural system. 

The model also makes novel predictions that were tested in a series of behavioral 

experiments. Specifically, when similar items are stored, shared lateral inhibition 

produces a sharpening of the peaks of activation associated with each item in memory. In 

the context of the model, this leads to the prediction that change detection will be 

enhanced for similar versus dissimilar features. This prediction was confirmed in a series 

of change detection experiments exploring memory for both color and orientation. 

In addition to sharpening, shared lateral inhibition among similar items produces 

mutual repulsion between nearby peaks. This leads to the prediction that when similar 

features are held, they will be systematically biased away from each other over delays. 
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This prediction was confirmed in a cued color recall experiment comparing memory for a 

“far” color with memory for two “close” colors. 
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ABSTRACT 

Many tasks rely on our ability to hold information about a stimulus in mind after 

it is no longer visible and to compare this information with incoming perceptual 

information. This ability relies on a short-term form of memory known as visual working 

memory. Research and theory at the behavioral and neural levels has begun to provide 

important insights into the basic properties of the neuro-cognitive systems underlying this 

form of memory. However, to date, no neurally-plausible theory has been proposed that 

addresses both the storage of information in working memory and the comparison 

process in a single framework. To address these limitations, I have developed a new 

model where working memory is realized via peaks of activation in dynamic neural 

fields, and comparison emerges as a result of interactions among the model’s layers. 

In a series of simulations, I show how the model can be used to capture each of 

the components underlying performance in simple visual comparison tasks—from the 

encoding, consolidation, and maintenance of information in working memory, to 

comparison and updating in response to changed inputs. Importantly, the proposed model 

demonstrates how these elementary perceptual and cognitive functions emerge from the 

coordinated activity of an integrated, dynamic neural system. 

The model also makes novel predictions that were tested in a series of behavioral 

experiments. Specifically, when similar items are stored, shared lateral inhibition 

produces a sharpening of the peaks of activation associated with each item in memory. In 

the context of the model, this leads to the prediction that change detection will be 

enhanced for similar versus dissimilar features. This prediction was confirmed in a series 

of change detection experiments exploring memory for both color and orientation. 

In addition to sharpening, shared lateral inhibition among similar items produces 

mutual repulsion between nearby peaks. This leads to the prediction that when similar 

features are held, they will be systematically biased away from each other over delays. 



www.manaraa.com

 vii 

7 

This prediction was confirmed in a cued color recall experiment comparing memory for a 

“far” color with memory for two “close” colors.    
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CHAPTER 1 

VISUAL WORKING MEMORY AND 

CHANGE DETECTION 

 

Human thought and behavior arises within dynamic and often highly complex 

visual environments. Within such environments, objects are distributed in space and the 

events within which they are embedded unfold over time. Although the general properties 

of a complex scene can be obtained in a single fixation (Potter, 1976; Schyns & Oliva, 

1994), acquiring detailed visual information from spatially separated regions requires the 

sequential inspection of different objects through movements of the eyes (see review in 

Henderson & Hollingworth, 1999). This allows objects of interest to be centered over the 

fovea, a region of the retina containing over 30,000 densely packed photoreceptors that 

provides high-acuity information to the visual system. However, the detailed iconic 

representations formed during each fixation quickly fade as the eyes move on to inspect 

new objects (Irwin, 1993; Simons & Levin, 1997). As a result, some form of visual 

memory is needed to maintain continuity in perceptual processing. In addition, the use of 

visual memory is necessary whenever we need to compare visual percepts created at 

different points in time.  

Imagine, for example, that you are sitting at your desk drinking a cup of morning 

coffee. At some point, you set the coffee cup down and turn away to retrieve a paper 

from your briefcase. When you turn back towards the desk and reach for the coffee mug, 

you notice that the cup is different from the cup you were drinking from previously (e.g., 

its color has changed). What’s the cause of this change? Looking around, you realize that 

a colleague sitting at a nearby desk has picked up your coffee mug, mistakenly 

identifying it as her own. To detect simple changes such as this, the properties of the first 

cup must have been held for a brief period of time in memory and subsequently 

compared to the second cup. 
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In this chapter, I will provide a selective review of the literature examining the 

cognitive and neural systems underlying the short-term form of memory utilized in such 

tasks. This discussion will focus primarily on behavioral and neural recording studies of 

change detection, a laboratory task that captures the basic challenges inherent in the 

office scenario described above. In addition, I will discuss two different levels of 

theorizing that have been formulated to capture findings in this area. Theories at each 

level have provided important insights into the basic properties of the neuro-cognitive 

systems underlying specific aspects of working memory. However, to date, no neurally-

plausible theory has been proposed that addresses both the storage of information in 

working memory and the process of change detection in a single framework. The 

development of such theories is necessary if we are to effectively bridge the gap between 

neural data and behavior. My dissertation will focus on the development of a neurally-

based process model that begins to address these challenges. 

Fundamentals of visual working memory 

Performance of simple visual comparison tasks like the one described above have 

been shown to rely on a short-term (~200 ms to 30 s) form of visual memory that can be 

differentiated from much shorter-term iconic memory (see, e.g., Averbach & Coriell, 

1961; Irwin, 1992; Sperling, 1960), and from much longer-term forms of memory (see 

discussion in Luck, in press). This variety of memory was known as primary memory in 

the early days of psychology (see, e.g., James, 1890), and later became known as short-

term memory (STM; see, e.g., Atkinson & Shiffrin, 1968). Beginning in the 1970s (see, 

e.g., Baddeley & Hitch, 1974; G. A. Miller, 1960), however, usage of the term short-term 

memory, which emphasizes the storage of information in memory, was largely 

supplanted by the term working memory. This concept subsumes the storage functions 

attributed to short-term memory, but places greater emphasis on the manipulation of 

information in service of ongoing cognition and behavior, as opposed to passive 

maintenance. 
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A number of models have been proposed that address the architecture and 

functioning of working memory. For example, Baddeley (Baddeley & Hitch, 1974; 

Baddeley & Logie, 1999) proposed a multi-component model of working memory which 

posits a set of specialized storage systems that are controlled by a central executive. Early 

versions of the model distinguished two different storage systems: a verbal storage 

system (the articulatory loop), and a visual-spatial storage system (the visual-spatial 

sketchpad). This distinction has been supported by the finding that brain damage can lead 

to impaired verbal STM and spared visual STM, and vice versa (De Renzi & Nichelli, 

1975). Similarly, behavioral studies have demonstrated that holding information in verbal 

STM does not impair one’s ability to remember visual information, and vice versa 

(Scarborough, 1972; Vogel, Woodman, & Luck, 2001). More recently, it has been 

proposed that visual objects are stored in yet a third storage system, the visual cache 

(Baddeley & Logie, 1999), which is distinct from the spatial storage system. Although 

some work has supported this distinction (Logie & Marchetti, 1991; Woodman & Luck, 

2004; Woodman, Vogel, & Luck, 2001), other work has suggested that spatial and object 

information are stored together in working memory (see discussion in, Luck, in press). 

Another influential model, proposed by Cowan (Cowan, 1988, 1999), holds that 

information in working memory is not maintained within dedicated storage buffers, but 

instead reflects the subset of information that is currently in the focus of attention. 

According to this embedded-process model, working memory arises within a hierarchical 

system comprised of long-term memory, the subset of long-term memory that is currently 

activated, and the subset of activated memory that is currently within the focus of 

attention. Thus, in this view, information is not stored in working memory, but neural 

populations representing this information can be more or less activated depending on the 

current focus of attention, recent behavioral history, and so forth. 

A related view from the domain of cognitive neuroscience (D'Esposito, 2007; 

Fuster, 2003; Postle, 2006) holds that working memory is not a separate system, with 
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dedicated storage buffers localized in particular brain regions, but rather is an emergent 

property arising as a result of functional interactions between the prefrontal cortex (PFC) 

and posterior brain systems involved in the perception of stimuli in the environment. In 

this view, the PFC, and perhaps other multi-modal cortical areas such as the posterior 

parietal cortex and hippocampus, serves as a source of top-down input to unimodal 

posterior cortical areas representing task-relevant information. Such inputs may serve to 

enhance task-relevant information, or, conversely, to suppress task-irrelevant information 

(see review in D’Esposito, 2007). 

Whether viewed as a dedicated storage system, or as an emergent property 

reflecting interactions within and between cortical areas, it is clear that information about 

objects in the environment can be acquired and remembered over short-term intervals 

after the stimulus is no longer visible. In the present work, I adopt the term visual 

working memory (VWM) to refer to the cognitive and neural systems supporting this 

form of memory. One of the primary tasks used to study VWM is the change detection 

task depicted in Figure 1. A typical trial in this task involves the presentation of a sample 

array containing one or more simple objects (e.g., colored squares), which observers are 

asked to remember. This is followed by a brief (e.g., 1000-ms) delay interval, and the 

appearance of a test array that is either identical to the original sample array, or differs 

from it in the color of a single object. Participants then make a two-alternative forced 

choice (2-AFC) response, indicating whether the items in the test array are the same as or 

different than the items that were present in the sample array. 

Information processing has been the dominant theoretical framework used to 

explain performance in this task. From an information processing perspective, this task 

can be broken down into a series of discrete stages. The first stage involves the perceptual 

encoding of the sample array and the consolidation of this information in VWM. The 

second stage involves the maintenance of this information throughout the delay interval. 



www.manaraa.com

 5 

In a final comparison stage, the items present in the test array are compared to the 

contents of VWM and a same/different decision is generated.  

Adoption of this stage-like view has allowed rapid progress in understanding the 

properties of the VWM system. For example, behavioral studies of change detection have 

begun to elucidate the properties of the systems involved in the encoding/consolidation of 

information in VWM. This work has suggested that consolidation and maintenance in 

VWM may rely on independent processes (Woodman & Vogel, 2005); that VWM 

representations are established very rapidly, with objects being encoded at a rate of 25-50 

ms per item (Gegenfurtner & Sperling, 1993; Shibuya & Bundeson, 1988; Vogel, 

Woodman, & Luck, 2006); and that consolidation reflects an all-or-none process, rather 

than a gradual accumulation of information where VWM representations become more 

and more precise over time (Zhang, 2007; Zhang & Luck, in press). 

Similarly, studies of change detection focusing on maintenance have suggested 

that the capacity of VWM is highly limited to around 3-4 items worth of information 

(Luck & Vogel, 1997; Phillips, 1974; Vogel et al., 2001). Moreover, the studies of Luck 

and colleagues have revealed identical capacity limits when the to-be-remembered 

stimuli consisted of multi-feature objects (e.g., colored, oriented bars of different 

lengths), rather than single features. Because feature changes could occur along any one 

of the represented dimensions at test (i.e., the orientation, color, or line length of one of 

the items could change), participants needed to store all of the features of each object in 

VWM to successfully perform the task. Thus, it appears that participants can remember a 

relatively large number of individual features as long as the total number of objects to be 

remembered does not exceed the 3-4 item capacity of VWM. This finding has been taken 

as support for the notion that VWM stores integrated object representations, rather than 

free-floating features (see, e.g., Luck & Vogel; see also, Irwin & Zelinsky, 2002; 

Johnson, Hollingworth, & Luck, in press). 



www.manaraa.com

 6 

Finally, with respect to comparison, there is very little known at present. 

However, combined behavioral and eye-movement recording studies of change detection 

have demonstrated that the detection of changes at test elicits rapid movements of the 

eyes to the location of the change (Hyun, Woodman, Vogel, Hollingworth, & Luck, in 

press). 

Clearly, the behavioral analysis of change detection as a series of discrete stages 

has begun to tell us quite a lot about the separate components involved in this task, and in 

VWM more generally. In addition, neural recording studies adopting a similar 

methodological strategy have begun to localize the specific brain areas supporting each 

stage. Critically, however, the picture emerging from this work suggests a more complex 

picture than a simple stage-based view can support. For example, functional magnetic 

resonance imaging (fMRI; see, e.g., Pessoa, Gutierrez, Bandettini, & Ungerleider, 2002; 

Todd & Marois, 2004; Xu & Chun, 2006) and event-related potential (ERP; Vogel & 

Machizawa, 2005) studies of change detection have shown that maintenance in VWM 

engages a number of different brain areas, including specific regions of the inferior 

temporal, posterior parietal, and frontal cortex, which are known to interact in complex 

ways. Moreover, although behavioral work has been taken to support a clean division 

between consolidation and maintenance in VWM (Woodman & Vogel, 2005), the fMRI 

studies of Pessoa and colleagues suggest the involvement of a broadly overlapping 

network of brain regions in both phases of the task. Similarly, the detection of changes at 

test has been shown to engage a widespread network of brain areas implicated in the 

control of attention, in addition to the specific brain areas involved in perceptual and 

memory encoding (Pessoa & Ungerleider, 2004; see also, Hyun, et al., in press). This is 

not surprising, given that the comparison process is fundamentally about the integration 

of perception and WM in the moment, allowing the determination of sameness or 

difference.  
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Compounding the problem, single unit recording studies with non-human 

primates have begun to uncover the rich spatio-temporal dynamics underlying working 

memory at the cellular and network levels (see, e.g., Amit & Mongillo, 2003; Fuster & 

Alexander, 1971; Goldman-Rakic, 1987). This work has suggested that, rather than 

reflecting an orderly feed-forward progression of stages, even simple tasks probing WM 

recruit diverse populations of neurons distributed throughout the brain. Distributed neural 

systems such as these are noisy, densely interconnected, and time-dependent; they pass 

continuous, graded, and metric information to one another; and they are continuously 

coupled via both short-range and long-range connections (see, e.g., Constantinidis & 

Steinmetz, 1996; Rao, Rainer, & Miller, 1997). The distributed nature of such neuro-

cognitive processes does not necessarily rule out a stage-based view of cognition, 

however. For instance, cognition could unfold as a series stages, as proposed by 

information processing theorists, but with multiple interconnected brain regions 

participating in different aspects of each stage. However, once this step is taken, one is 

confronted with the challenge of explaining how this seemingly stage-like behavior arises 

from the activity of a neural system with the properties described above. Addressing 

these issues raises deep theoretical challenges that have yet to be confronted. 

Theoretical approaches to VWM and change detection 

Given the complexity of the issues described above, it is perhaps not surprising 

that no single theory has been proposed that sheds light on both behavioral and neural 

findings within research on visual working memory. However, several theories have been 

developed that capture aspects of the literature reviewed above. For example, at the 

cognitive/behavioral level of theorizing, a number of models have focused on the 

maintenance stage, addressing capacity limits and the nature of the representations held 

in VWM (Alvarez & Cavanagh, 2004; Luck & Vogel, 1997; Wheeler & Treisman, 2002; 

Zhang & Luck, in press). For example, Zhang and Luck have developed a quantitative 

approach where capacity limits are proposed to reflect the functioning of a VWM system 
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that stores a small number of discrete, fixed-resolution slot-like representations. When 

more than a few items are presented, observers form high-resolution representations for a 

subset of the objects and have no information about the remaining objects. As a result, 

when one of the items that failed to make it into VWM is probed at test, observers’ 

responses are based on their best guess, which results in a high number of errors when the 

number of to-be-remembered items is high. 

In contrast to this proposal, Alvarez and Cavanagh (2004) have argued that 

working memory consists of a pool of resources that can be allocated flexibly depending 

on the demands of the task. Thus, when presented with more than a few items, observers 

can store either a small number of high-resolution representations, or a larger number of 

low-resolution representations. Capacity limits arise because, presumably, relatively 

high-resolution representations are necessary to support performance in most change 

detection tasks, and only a small number of such representations can be formed and 

maintained simultaneously. 

Despite lingering disagreements, models such as these have begun to clarify the 

nature of the representations stored in VWM. However, they have not addressed the 

question of how such representations are integrated with incoming percepts to arrive at 

the comparison decisions required in change detection. In addition, although possible 

links to neurophysiology have been suggested, it has yet to be shown how the properties 

suggested by these models emerge from the complex dynamical processes underlying 

neural function. That said, a particular strength of theories at this level is their firm 

commitment to rigorous behavioral research exploring VWM in human subjects. 

At a neurodynamical/biophysical level of theorizing, models have focused on the 

cellular and network basis of maintenance in working memory using biophysically 

realistic models of single neurons and cortical circuits (see reviews in, Durstewitz, 

Seamans, & Sejnowski, 2000; Wang, 2001). Models at this level have emphasized the 
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complex interactive dynamics evident in neural systems and have maintained a tight 

interface with neural recording studies of working memory in non-human primates. 

For example, Camperi and Wang (1998) have proposed a neurally realistic model 

of the prefrontal cortex that captures working memory for single spatial locations. Within 

this model, neurons coding for similar spatial locations are linked together through 

recurrent excitatory connections, with the strength of excitatory coupling decreasing as a 

function of the distance between their preferred cues (see discussion of space code 

models in Chapter 2). Spatial tuning is further shaped by broad lateral inhibition, in 

keeping with known physiological interactions (Rao, Williams, & Goldman-Rakic, 

1999). This type of tuning allows localized peaks activation or “bump attractors”, 

representing particular spatial locations, to be sustained in the absence of continuing 

external input.  

Models in this class provide a neurally plausible basis for maintenance in working 

memory. However, much of this work has focused on the maintenance of single spatial 

locations and has not addressed multi-item VWM and the process by which VWM 

representations are compared to new perceptual inputs. As a result, these models have 

had little to say about the storage capacity of VWM (for an exception, see Trappenberg, 

2003). Additionally, such approaches have made little contact with the human behavioral 

literature on VWM, and, in particular, with the large literature using the change detection 

paradigm. 

In summary, although the models reviewed here show promise for elucidating the 

properties of the systems underlying performance in working memory tasks, there exists 

no single theory that addresses how the encoding and maintenance of multiple items in 

VWM and the process of change detection arises within an integrated, real-time neural 

system. Given this state of affairs, an important goal is to develop models that can bridge 

the gap between the behavioral and neural levels of theorizing. Specifically, we need 
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models that embrace the complex real-time dynamics of neural systems while 

maintaining a tight interface with behavioral research examining VWM.  

Overview of the dissertation 

My dissertation focuses on the development of a neural process model of multi-

item VWM and change detection that begins to address these challenges. The first goal of 

the dissertation is to formalize this new model. To this end, Chapter 2 will provide a more 

extensive discussion of neural approaches to working memory, and will introduce the 

broader framework within which my model is situated. This will be followed by a 

description of the specific model architecture I’ve developed, together with a series of 

exemplary simulations demonstrating how the basic perceptual and cognitive functions 

supporting VWM and change detection can emerge from a fully integrated, complex 

dynamic neural system operating in real time. 

The second goal of the dissertation is to empirically test novel predictions of the 

new model. Chapter 2 will introduce the notion that, rather than being stored entirely 

independently, items in VWM interact in specific ways depending on their metric 

relations (i.e., how similar they are along the represented dimension). Chapters 3 and 4 

will explore the consequences of such interactions on performance in tasks used to probe 

VWM. Specifically, Chapter 3 will present a series of change detection experiments 

testing the prediction that interactions among items in VWM will lead to enhanced 

change detection when metrically-similar items are stored (e.g., similar colors and 

orientations). Chapter 4 will use a cued color-recall paradigm to test a second, more 

subtle prediction—that interactions in VWM will lead to mutual repulsion between items 

when metrically-similar features are stored. 

Finally, it should be noted that the work I present here focuses on the active 

maintenance of memory for metric feature dimensions such as color and orientation over 

short-term delays, and does not address the spatial aspects of such representations. This 

should not be taken as a specific claim about the relative independence of spatial and 
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object subsystems in VWM, but rather as a convenient starting point for my 

investigations. Although spatial location does play a role in each of the experiments 

described below, a detailed consideration of the spatial aspects of the object 

representations I probe will not be addressed in this first pass of theory development. 

Ultimately, however, I believe it will be necessary to address how object and spatial 

information come together if we are to understand how vision can be used to support 

adaptive behavior, a topic I will return to in the General Discussion. 
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Figure 1. Change detection task used to explore properties of visual working memory for 
simple features (adapted from Luck & Vogel, 1997). Different fill patterns represent 
different solid colors. 
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CHAPTER 2 

A DYNAMIC NEURAL FIELD MODEL 

OF VISUAL WORKING MEMORY 

AND CHANGE DETECTION 

 

  Many everyday tasks rely on our ability to actively maintain information in 

memory. At the neural level, sustained activation of appropriately tuned populations of 

cells has been proposed as a mechanism for maintenance in working memory (see, e.g., 

Amit, 1995; Grossberg, 1978; Wang, 2001). In the present chapter, I will extend the 

discussion of neural models of working memory that began in Chapter 1. This discussion 

will focus on three different forms of neural coding that could be used to capture working 

memory for visual features. Next, I will introduce a theoretical framework, the Dynamic 

Field Theory, that adopts one of these forms of coding, and which has been used as a 

framework for thinking about issues in visual-spatial cognition. This will be followed by 

a detailed consideration of a new dynamic neural field model I have developed that 

extends this framework to address VWM and change detection, together with a series of 

simulations that demonstrate the functionality of the model. I will end by considering 

several novel empirical predictions that can be derived from this model. 

Information is represented in the brain by the electrical activity of neurons, and a 

central question in neuroscience concerns which aspects of a neuron’s activity convey 

information about the environment and our mental states. That is, how is information 

encoded in the firing patterns of neurons? To date, three different forms of neural coding 

have been identified and used to capture aspects of memory for metric information. The 

first applies a rate coding principle for representing metric information (Romo, Brody, 

Hernández, & Lemus, 1999; Salinas, Hernández, Zainos, & Romo, 2000). With this type 

of coding, information about the metric dimension is carried by the average sustained 

B E A 
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firing rate of selectively tuned populations of neurons, with different firing rates 

representing different values along the dimension. 

Several models have been developed that use a rate coding principle to capture 

performance in the context of specific discrimination paradigms (see, e.g., Machens, 

Romo, & Brody, 2005; P. Miller & Wang, 2006). For instance, Miller and Wang 

described a neural model of two-interval vibrotactile frequency discrimination using a 

rate-coding principle. In this task, the specific vibrational frequency of an initial stimulus 

(S1) is remembered across a short delay interval and is compared to the frequency of a 

second stimulus (S2). The animal then makes a binary decision, indicating whether the 

frequency of S2 is greater than or less than S1. In their model, graded mnemonic activity 

reflecting the frequency of S1 in working memory provides an inhibitory signal to 

upstream neurons responding to S2. The inhibitory signal gates later inputs to the model 

on the basis of the difference in amplitude between S1 and S2. When S2 > S1, upstream 

neurons overcome the inhibition from working memory and their firing rate increases, 

whereas when S2 < S1, upstream neurons do not respond. Such differential frequency-

dependent responding to S2 provides a plausible means of generating the binary decision 

required in the frequency discrimination task. 

Rate coding models like this can provide a framework for thinking about the 

integration of perceptual and memory processes in specific discrimination paradigms. In 

addition, they can be used to capture properties of the sustained patterns of neural activity 

found in neural recording studies of somatosensory working memory in non-human 

primates (Romo et al., 1999). However, because the same population of neurons cannot 

simultaneously maintain different average firing rates, an approach to multi-item memory 

and change detection using the rate coding principle is not possible. 

In addition to encoding information using the specific average firing rate of a 

population of neurons, a temporal coding principle has also been proposed, where the 

time structure of neural activity is used to represent information. Although the coding of 
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information in the time structure of neural firing can take many different forms (Shadlen, 

2002), the form of temporal coding that has been most closely associated with working 

memory functions is the neural synchrony code. As the name suggests, this form of 

coding carries information about metric features via synchronized oscillatory 

reverberation among similarly tuned neurons in separate populations. Models using this 

form of coding have received some support from studies reporting gamma-band 

oscillations in the electroencephalogram (EEG) that are correlated with working memory 

load (see, e.g., Howard et al., 2003; Tallon-Baudry, Bertrand, Peronnet, & Pernier, 1998). 

Unlike rate coded models, temporal coding models have been proposed as a plausible 

neural basis for both multi-item memory for features, and as a means of binding together 

features belonging to the same object in memory. 

For instance, Raffone and Wolters (2001) have proposed a neural synchrony 

model of multi-item VWM where assemblies of neurons modeling inferotemporal cortex 

(IT) are linked to matching assemblies that model prefrontal cortex (PFC). Individual 

neurons in IT code for the presence of individual feature values, whereas the assemblies 

represent perceived objects. When stimulated, the IT-PFC system enters into sustained 

oscillations, with cells representing different features firing out of phase with each other. 

This allows multiple feature values to be sustained simultaneously by the network. 

Additionally, synchronized activity within the IT-PFC assemblies establishes links 

among features, "binding" these features into objects. Inhibition among these assemblies 

effectively chunk input into separate objects, which are separately maintained in WM. 

The model accounts for the limited capacity of VWM in terms of spurious 

synchronization, that is, the increasing instability of temporal binding as the number of 

chunks increases. 

 Neural synchrony models, therefore, represent a promising candidate framework 

for modeling VWM and change detection. Although some research has supported a role 

for synchronous neural oscillations in working memory, and in general there has been 
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much enthusiasm for this coding principle, there is in fact little evidence supporting it, 

and direct ties to the behavioral literature have remained limited (see, e.g., Shadlen, 2002; 

Shadlen & Movshon, 1999). In addition, such models have not been applied to the 

comparison process. Finally, many temporal coding models, including the neural 

synchrony model described above, rely on reciprocal loops between different brain 

regions for maintenance (e.g., between the PFC and IT or posterior parietal cortex). 

Although functional interactions between areas are likely to play a role in working 

memory, existing evidence suggests that such loops are not necessary to generate 

sustained activation (E. K. Miller, Erickson, & Desimone, 1996). 

A third approach represents metric information through sustained peaks, or 

“bumps”, of activation in neural fields (see discussion of Camperi & Wang, 1998 above;  

see also, Compte, Brunel, Goldman-Rakic, & Wang, 2000; Trappenberg, 2003). Such 

approaches propose a space code principle for representing metric information. This 

principle holds that information about the metric dimension is represented by the position 

of one or more peaks of activation across a population of location- or feature-selective 

neurons. Support for this proposal has come from single-unit studies showing that 

memory for a given spatial location is stored by neural populations in the form of a 

spatially localized sustained firing pattern (see, e.g., Funahashi, Bruce, & Goldman-

Rakic, 1989; Fuster & Alexander, 1971). Similar localized patterns of activation 

representing memory for non-spatial object properties and other task-relevant information 

have also been found (see, e.g., Andersen, Bracewell, Barash, Gnadt, & Fogassi, 1990; 

Fuster & Jervey, 1981; E. K. Miller, Li, & Desimone, 1993). 

Space code models have been proposed at both the biophysical and the neural 

population level (see, e.g., Camperi & Wang, 1998; Spencer, Simmering, Schutte, & 

Schöner, 2007). Such approaches have been rigorously tied to both behavioral and neural 

data looking at spatial working memory. In addition, space code models have in some 

cases been adapted to capture VWM for metric feature dimensions (Trappenberg, 2003). 
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However, as suggested in Chapter 1, most models within this framework have been 

focused on memory for single spatial locations and, to date, have not been extended to 

address the comparison process (but see Simmering, Spencer, & Schöner, 2006 for steps 

in this direction). 

To summarize, several different neural codes have been proposed that could be 

used to capture memory for metric feature information. Of these, only space code and 

temporal code models are in a position to account for multi-item memory for visual 

information. In addition to maintaining information about stimuli that are no longer 

present, however, working memory must be integrated with perceptual representations 

that are stimulus driven. Some rate coding models have addressed the integration of 

perceptual and memory processes (Machens et al., 2005; P. Miller & Wang, 2006). 

However, this has been achieved within the context of specific discrimination paradigms, 

and concrete limitations of such models make them unsuited to multi-item VWM and 

change detection. In contrast, Simmering et al. (Simmering et al., 2006) have proposed a 

space coding model of position discrimination that shows promise in this regard. 

Although the model has only been applied to single-item position discrimination, space-

coding models can be adapted to multi-item memory. For these reasons, in the present 

work, I adopt a space coding approach for representing metric information in working 

memory, extending these approaches to capture the processes underlying change 

detection. It should be noted, however, that the three forms of coding discussed above are 

not mutually exclusive, and current evidence supports a role for each in different aspects 

of the neural coding of information. 

Dynamic Field Theory as a framework for thinking about 

the integration of perceptual and memory processes 

To begin addressing VWM and change detection within an integrated neural 

system, I have developed a new model that builds on the Dynamic Field Theory (DFT) of 

spatial cognition (Simmering, Schutte, & Spencer, 2008; Spencer & Schöner, 2003). This 
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approach shares the same goal as many biophysical neural network approaches—to think 

about cognition as the emergent product of complex, contextually-specific neural 

dynamics—but accomplishes this goal in a way that is more tightly linked to human 

behavioral work in cognitive psychology that has formed the backbone of the information 

processing view of VWM. 

The DFT grew out of a program of research and theory that has come to be known 

as the ‘motor approach’ (Spencer et al., 2006; Spencer & Schöner, 2003). This approach 

originated in the work of Scott Kelso, Gregor Schöner, and colleagues looking at 

coordinated motor activity (Kelso, 1995; Kelso, Scholz, & Schöner, 1986; Schöner & 

Kelso, 1988a, 1988b), and the work of Esther Thelen and her colleagues on infant 

sensori-motor development (Thelen & Smith, 1994; Thelen & Ulrich, 1991). 

According to this approach, human behavior reflects a dynamic balance among 

stability, instability, and flexibility.  In dynamic systems terms, a system is said to be 

stable when it settles into one of its preferred ‘attractor’ states, wherein behavioral or 

neural states can persist in the face of systematic or random perturbations (Braun, 1994). 

The ability to maintain such stable states (e.g., stably remembering the properties of your 

coffee cup following a look away) is a key component of adaptive behavior. However, of 

equal importance is the ability to flexibly change behavior when the circumstances 

require it (e.g., to update WM in the face of changed information). To achieve this, the 

current stable state must be de-stabilized so that a new stable state, reflecting, for 

instance, the changed state of the world, can arise. In dynamic systems terms, a change of 

a system that leads a particular state to become unstable is referred to as an instability 

(see Braun, 1994, Chap. 4). 

In contrast to an information processing approach, dynamical systems approaches 

emphasize how behavior and cognitive processes emerge from the coordinated activity of 

integrated sensorimotor, perceptual, and cognitive systems. Although this emphasis 

provides a leg up in terms of thinking about integration (e.g., the integration of spatial 
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and non-spatial object features), the challenge created by this view is the challenge of 

analysis: If cognition and behavior arise from an integrated system, how can we make 

sense of the processes that underlie behavior? The approach that has been pursued within 

this framework, and which is further explored here, is to build cognitive/neural systems 

that are reentrant, reciprocally coupled, fully integrated dynamical systems, but that have 

subsystems whose dynamical properties leave behavioral ‘signatures’ that can be 

observed in particular situations. In this way, it is possible to engage in rigorous 

hypothesis testing and to generate novel behavioral predictions—a core strength of the 

information processing approach—while addressing the integrated nature of cognitive 

processes. 

Basics of dynamic neural activation fields: Elementary 

perceptual and memory processes in two-layer networks 

The number of neurons and synapses within a given patch of cortical tissue is 

immense, and the patterns of connectivity among them is truly staggering. However, at a 

mathematical level, it has been shown that the problem can be usefully simplified if we 

regard cortical neural tissues as continuous neural fields that form and propagate 

interacting patterns of excitation and inhibition over time (see, e.g., Amari, 1977; Buerle, 

1956; Griffith, 1963, 1965; Grossberg, 1980; Wilson & Cowan, 1972). A highly 

influential formulation of this idea was proposed by Amari (1977; Amari & Arbib, 1977) 

on the basis of studies examining neural dynamics within the visual cortex of cats. A 

simple two-layer network of the type analyzed by Amari can be seen in Figure 2. The 

basic model consists of a single population of visually-selective excitatory neurons 

reciprocally coupled to a second population of similarly tuned inhibitory neurons. These 

neurons are arranged by their topographic position in cortex, thereby forming a 

continuous dynamic neural field. Activation in the field represents, for instance, the 

retinal position of a stimulus. Thus, the discrete sampling of inputs by individual neurons 
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that is more typical in neural network approaches is replaced in this formulation by a 

continuous neural field that represents the metric structure of the represented dimension.  

Although the field concept was originally developed to address neural dynamics 

in topographically organized visual areas (e.g., V1), the same methods have also been 

used where no clear topographic organization is apparent (e.g., in the motor cortex; see 

Bastian, Riehle, Erlhagen, & Schöner, 1998; Erlhagen, Bastian, Jancke, Riehle, & 

Schöner, 1999; Georgopoulos, 1995). In this case, neurons within the field are ordered 

according to their functional topography—that is, by the stimuli that they prefer, with 

nearby neurons coding for similar properties (e.g., similar colors), and distant neurons 

coding for distinct properties (e.g., different colors). 

Patterns of activation within such fields can live in different attractor states. For 

instance, in the absence of input, the activation level across the population of neurons 

remains at a stable baseline rate, indicating that no relevant features are currently present. 

However, in the presence of input, reflecting, for instance, the appearance of a particular 

colored object in the task space, activation increases for those neurons selectively tuned 

to this feature. If input is sufficiently strong, the stable baseline firing state is destabilized 

and the field moves into an “on” state, characterized by the formation of a localized peak 

of activation within the field. The location of the resultant peak along the represented 

dimension reflects the field’s estimation of the metric values present in the task space 

(e.g., the detection of a particular color), in keeping with the space coding principle. Two 

or more instances along the dimension are represented by a double or multi-peaked 

distribution, with the level of activation providing an estimate of the certainty of each 

informational source. For instance, a high level of certainty about the presence of a 

particular feature (e.g., blue) is represented by a higher level of activation than a less 

probable feature (e.g., red). 

Although the picture sketched thus far parallels many of the concepts used by 

feed-forward networks, it is important to emphasize that activation in dynamic neural 
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fields does not simply mimic the structure of input (though that is one potential limit case 

of the model’s dynamics). Rather, activation in dynamic neural fields can take on a life of 

its own due to the internal dynamics that govern the evolution of activation through time. 

The model developed here uses the generic locally excitatory and laterally inhibitory, or 

“Mexican hat”, form of interaction among neurons described by Amari (1977), and 

commonly found in cortical feature maps (Durstewitz et al., 2000; Rao et al., 1999). With 

this form of interaction, neurons coding for similar properties (e.g., similar locations, 

features, objects, etc.) enter into mutually supportive interactions via excitatory synaptic 

connections (solid curved arrow in Figure 2), and neurons coding for very different 

properties enter into mutually suppressive interactions (dashed arrows in Figure 2) 

mediated by a field of inhibitory interneurons. 

The simulations in Figure 3 illustrate the three basic attractor states that arise in 

the 2-layer dynamic neural field model. The first attractor state is illustrated in Figure 3A, 

which shows the state of the field prior to input. At this point, the field is characterized by 

a stable sub-threshold state of activation, reflecting the absence of information along the 

metric dimension. In Figure 3B, the field has transitioned to a self-stabilized state, 

wherein one or more above-threshold peaks of activation are formed in response to 

specific input. Such peaks remain above threshold as long as the input remains on, but 

quickly transition back to the sub-threshold state when input is removed. Finally, in the 

simulation shown in Figure 3C, the strength of excitatory recurrence among neurons in 

the excitatory layer has been increased slightly. In this case, the field enters a self-

sustaining state where peaks of activation can remain above threshold after the input has 

been removed, a form of working memory that is central to the work presented here.  

Which regime a field is working in depends on several factors, but of most 

importance is the balance between excitatory and inhibitory interaction. If inhibition is 

too strong relative to excitation, peaks will transition back to the sub-threshold state once 

the stimulus has been removed. However, changing the strength of excitation and 
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inhibition is not the only way to move the network into a given regime. With all other 

parameters held constant, a given network can be made to function in either the self-

stabilized, input-driven regime or the self-sustained regime by global modulations of the 

resting level of neurons in the field. This changes the functional balance between 

excitation and inhibition without requiring specific changes to the parameters that 

determine the strength of these factors. Such modulations could play a role in allowing 

“executive” processes (e.g., processes believed to be implemented by the PFC), which are 

responsible for maintaining task demands to determine what types of information are 

maintained in working memory for use in ongoing tasks (see, e.g., D'Esposito, 2007; 

Fuster, 2003). For instance, in a task where color is the relevant behavioral dimension, 

the resting level of neurons in color-selective regions of cortex could be boosted slightly, 

allowing them to enter the self-sustained state following stimulus presentation (Buss & 

Spencer, 2008). Conversely, the resting level of neurons coding for other task-irrelevant 

dimensions (e.g., orientation) could be reduced through global inhibitory input, 

diminishing their role in the control of ongoing behavior and mental processes. 

Integrating perceptual and memory processes in a 

dynamic neural field model with three layers 

 The simple two-layer networks introduced in the previous section can serve either 

a perceptual or a working memory function. Thus, taken separately they capture some of 

the requirements of a model of VWM and change detection. For instance, a two-layer 

network operating in the self-stabilized regime, where peaks of activation are formed in 

response to input but die out when input is removed, could be used to capture the 

perceptual encoding of the test array. Additionally, a two-layer network operating in the 

self-sustaining regime, where peaks of activation remain above threshold after input has 

been removed, can be used to implement maintenance in VWM. As discussed previously, 

however, modeling working memory and change detection requires that each of these 

functions be integrated in the same model operating in real time. 
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To address this, I have developed a three-layer architecture consisting of two 

layers of excitatory neurons coupled to a single layer of inhibitory neurons. This 

framework allows simple perceptual and working memory functions, including the 

detection of stimuli in the task space and their retention in working memory, to be 

implemented in the same model. In addition, excitatory and inhibitory interactions among 

the layers gives rise to emergent decisions about detected change. The next section 

describes the architecture and patterns of connectivity of the model, and presents a series 

of simulations illustrating the functionality alluded to above. These simulations 

demonstrate that the model can serve as an integrated neural framework that captures the 

encoding, consolidation, and maintenance of information in WM, in addition to the 

coordination of WM and perception leading to updating and change detection in the face 

of changing sensory inputs. 

Model architecture 

To combine basic perceptual and working memory functions in a single 

architecture, I have developed the three-layer dynamic neural field model depicted in 

Figure 4. The model consists of an excitatory perceptual field (PF(u); Figure 4A), an 

excitatory working memory field (WM(w); Figure 4C), and a shared inhibitory field 

(Inhib(v); Figure 4B). In each field, the x-axis consists of a collection of neurons tuned to 

particular colors, and the y-axis shows each neuron’s activation level. These layers pass 

excitation and inhibition as indicated by green and red arrows, respectively. In addition, 

nearby neurons within both PF and WM interact via local excitatory connections.  

Finally, to capture performance in change detection tasks, I have added a response layer 

containing two nodes (Figure 4D). One neuron receives summed excitatory activation 

from PF, and is responsible for making “different” responses, and the other receives 

summed excitatory activation from WM and is responsible for “same” responses (see 

discussion below). In addition, these nodes are equipped with self-excitatory connections 

and are mutually inhibitory, implementing a type of “winner-take-all” decision. Thus, the 
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response nodes compete for response output in the context of change detection. Note that, 

for simplicity, time is not shown in this figure, although patterns of activation evolve 

continuously over time. 

Model equations 

Activation in the perceptual field, PF (u), is captured by: 
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where ),( txu&  is the rate of change of the activation level for each neuron across the 

feature dimension, x, as a function of time, t. The constant 
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the dynamics (Erlhagen & Schöner, 2002). The first factor that contributes to the rate of 

change of activation in PF is the current activation in the field,-u(x,t), at each site x. This 

component is negative so that activation changes in the direction of the resting level hu. 

Next, activation in PF is influenced by the local excitation / lateral inhibition 

interaction profile, defined by self-excitatory projections, 
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with strength, c, width, σ, and resting level, k. The sigmoidal function is given by:   
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where β is the slope of the sigmoid, that is, the degree to which neurons close to threshold 

(i.e., 0) contribute to the activation dynamics. Lower slope values permit graded 

activation near threshold to influence performance, while higher slope values ensure that 
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only above-threshold activation contributes to the activation dynamics. At extreme slope 

values, the sigmoid function approaches a step function. 

Inputs to the model take the form of a Gaussian: 
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centered at xcenter, with width, σ, and strength, c. These inputs could be turned on and off 

through time (e.g., the target appears and then disappears). This time interval was 

specified by the function χ(t). This is referred to as the “index function”, because it is set 

to one in a given interval, when the stimulus is on, and zero elsewhere. 

 Finally, activation within the field is influenced by the addition of a stochastic 

component consisting of spatially correlated noise with a particular strength and width. 

The second layer of the model, Inhib (v), is specified by the following 

equation: 

xdtxuxxchtxvtxv
vuvuv

!!"!#++#= $ )),(()(),(),(&%  

              noisexdtxwxxc
vwvw

+!!"!#+ $ )),(()( .                              2.5 

As before,

! 

˙ v (x, t)  specifies the rate of change of activation across the population 

of feature-selective neurons, x, as a function of time, t; the constant 

! 

"  sets the time scale; 

v(x,t) captures the current activation of the field; and hv sets the resting level of neurons in 

the field. Note that Inhib receives activation from two projections—one from PF, 

! ""#"$ xdtxuxxc
vuvu

)),(()( , and one from WM, ! ""#"$ xdtxwxxc
vwvw

)),(()( . 

As described above, these projections are defined by the convolution of a Gaussian kernel 

(Equation 2.2) with a sigmoidal threshold function (Equation 2.3). 

The third layer, WM (w), is governed by the following equation: 
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xdtxwxxchtxwtxw
wwwww

!!"!#++#= $ )),(()(),(),(&%  

xdtxvxxc
wvwv

!!"!## $ )),(()( xdtxuxxc
wuwu

!!"!#+ $ )),(()(  

      

! 

+c
s
s(x,t) + noise              2.6 

Again, ),( txw&  is the rate of change of activation across the population of feature-

selective neurons, x, as a function of time, t; the constant τ sets the time scale; w(x,t) 

captures the current activation of the field; and hw sets the resting level. WM receives self 

excitation, ! ""#"$ xdtxwxxc
wwww

)),(()( , lateral inhibition from Inhib, 

! ""#"$ xdtxvxxc
wvwv

)),(()( , and input from PF, ! ""#"$ xdtxuxxc
wuwu

)),(()( . 

WM also receives direct target input, s(x,t), scaled by cs. 

Note that the PF and WM layers are governed by identical equations. The primary 

difference between them is in the strength of direct target input, which is stronger to PF, 

and the strength of self-excitatory interactions, which is stronger in WM (i.e. cww > cuu, 

see Table 1). Additionally, WM receives excitatory input from PF, whereas WM only 

contributes inhibition to PF via the inhibitory layer. These differences make it easier for 

peaks to be sustained in the absence of input in WM versus PF. Additional functional 

consequences of these differences are considered in the following sections. 

 Finally, each of the nodes in the response layer are governed by the following 

equation (example shows ‘same’ node equation): 

! 

"˙ r 
s
(t) = #r

s
+ h

r
+ c

rr
$

s
(r

s
) # c

r
$

d
(r

d
)  

                                    

! 

+ c
su" #

su
(u( $ x ,t))d $ x + noise            2.7 

The rate of change of each node’s activation, rs (where the constant τ determines the time 

scale and subscript s denotes the ‘same’ node), is determined by the current activation 
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level, -rs, and the resting level of the node activation, hr. Each node has a self-excitatory 

connection, 

! 

c
rr
"

s
(r
s
), and receives inhibition from the other node, 

! 

c
r
"

d
(r
d
) . 

Additionally, the ‘same’ node receives summed excitatory input from WM(w), 

! 

c
su" #

su
(u( $ x ,t))d $ x , and the ‘different node receives summed excitatory input from 

PF(u). Each node also has noise added. 

Model simulations  

 In this section, I will present a series of simulations demonstrating the properties 

of the three-layer model. For simplicity, I will begin by showing how the model behaves 

when a single input is applied, moving from perceptual encoding, to working memory 

consolidation and maintenance, to comparison and updating. After this, I will move on to 

the multi-item case, showing how the model can capture key results from the literature 

thought to emerge across separate stages of information processing. Critically, I will 

show how these “stages” can reflect the time-dependent activity of a single, integrated 

dynamic neural system. 

Single-item perception and working memory 

Perceptual encoding. The resting level of neurons in each field, h < 0, ensures 

that interaction among neurons only plays a role in the presence of sufficiently strong 

input. For localized inputs, S(x), with low amplitude, PF, and to a lesser extent WM, 

begins to assume the form of the input, but activation values across all field sites remain 

negative (see Figure 5A). That is, PF and WM remain in the stable sub-threshold 

activation state. When the amplitude of the input is sufficiently strong (see Figure 5B), 

however, interactions among neurons come into play. At this point, PF transitions to the 

self-stabilized state consisting of a localized peak of activation centered at the location of 
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the input. The size and shape of the peak reflects both the input state, as well as locally 

excitatory and laterally inhibitory interactions among neurons (via recurrence between PF 

and Inhib). The transition from the sub-threshold state to the self-stabilized state as a 

function of input strength involves a dynamical instability and is the mechanism by 

which detection decisions, or perceptual encoding, emerge in the model. Thus, for the 

model to detect and stably encode a stimulus, input to PF needs to be sufficiently strong 

and of sufficient duration to generate a self-stabilized peak of activation. 

Consolidation and maintenance in working memory. In addition to activating 

neurons in Inhib, above-threshold activation in PF is propagated to WM. With 

sufficiently strong input, a single peak of activation begins to build in WM (see Figure 

5B). As before, this peak is stabilized by locally excitatory interactions in WM together 

with broad lateral inhibition from Inhib. Figure 5C shows the consequences of removing 

the input from PF. This event leads to the destabilization of the peak in PF. In contrast, a 

self-sustaining peak of activation remains in the WM field. This occurs as a result of the 

large reduction of excitatory input to PF when the input is removed, and a consequent 

reduction of inhibitory input to WM (note lower levels of activation in middle layer of 

Figure 5C). The strength of recurrent excitatory connections among neurons in WM is 

somewhat stronger than in PF, giving WM a competitive advantage once the input is 

removed. Although this contributes to both the maintenance of the peak in WM as well as 

the destabilization of the peak in PF via shared inhibition, sustained activation arises even 

in a variant of the model with identical patterns of excitatory interaction. This shows that 

working memory emerges in the WM layer as a result of the flow of incoming activation 

directly to PF and indirectly to WM. 
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Emergent change detection and updating in WM. In the absence of continuing 

perceptual input, the only input to PF comes from Inhib, whose activation is driven by the 

presence of a self-sustaining peak in WM. As a result, a region of inhibition is formed in 

PF at the location of the sustained peak in WM (see Figure 5D, top layer). This leads to a 

failure to re-ignite a peak in PF when a second input that matches the value being 

maintained in WM is presented to the model (see Figure 6A). Therefore, the model 

remains in its previous state, with a single stable peak of activation sustained in WM, and 

negative activation in PF. The presence of a peak in WM, but no peak in PF provides 

strong input from WM to the response layer, generating a “same” response in the context 

of change detection (response layer not shown here). Note that although PF fails to re-

ignite a peak, this layer shows sub-threshold deformations that reflect the input presented 

at test. Thus, one might say that the system perceived the stimulus but the on-going 

maintenance of an identical stimulus in WM prevented the formation of a self-stabilized 

peak at test. 

Compare this with a trial where a metrically very different input is applied at test. 

In this case, the input enters PF at a relatively uninhibited site, and an above-threshold 

peak is built in PF (see Figure 6B). At this point, both WM and PF send strong activation 

to the response layer, where competition to control response output ensues. However, 

because the peak in PF is strongly supported by perceptual input, it has a competitive 

advantage over WM, which allows a “different” response to be generated. 

Thus, visual comparison in the model amounts to a relatively low-level process 

where the amount of activation in PF versus WM drives a same or different decision at 

test. That is, there is no item-by-item comparison, where each target in the test array is 
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sequentially compared to the contents of working memory. At test, input comes into the 

model all at once, and comparison occurs globally and in parallel. If an above-threshold 

peak is established in PF at test, signaling that a novel input is present in the test array, 

the ‘different’ node receives strong activation, making it more likely for a different 

response to be generated. Otherwise, the same node tends to win out in the response 

layer. Thus, ‘same’ responses are generated by activation that is already present in WM, 

whereas ‘different’ responses must wait for activation to build in PF and overtake 

activation of the ‘same’ node. As a result, ‘same’ responses tend to be generated faster 

than ‘different’ responses, in keeping with previous findings (see review in Farell, 1985; 

Hyun, 2006). Thus, the model has clear potential for addressing RT effects in visual 

memory tasks, although this topic is not explored further here. 

In addition to signaling that a change has occurred, the presence of an above 

threshold peak in PF at test leads to the updating of WM. When the new peak is 

metrically relatively close to the old peak, interference can arise. In some cases this can 

result in the deletion of the old peak and its replacement by a new peak at the value 

specified by input from PF (see WM field in Figure 6C). However, as shown in Figure 

6D, when peaks are metrically far apart, a multi-peak solution can arise where the new 

peak is added to WM without destabilizing the old peak. This would reflect, for instance, 

the sequential loading into WM of items with different featural information obtained 

across successive eye movements or successive presentations of stimuli. 

Multi-item perception and working memory 

 The goal of the present section is to show that the basic functionality of the model 

illustrated for single items in the previous section can be extended to the multi-item case. 
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Recall that rate coded models have been used to address discrimination, but are 

conceptually incapable of multi-item memory. Reversely, temporal coding models have 

addressed multi-item memory, but the mechanism behind comparison is not clear. Thus, 

it is important to demonstrate that the neural field model proposed here goes beyond such 

models by addressing multi-item VWM and change detection. 

Multi-peak encoding, consolidation, and maintenance. The presence of multiple 

high-amplitude inputs results in the formation of peaks of activation in PF, representing 

the detection and stable encoding of multiple features in the task space. In general, 

because PF operates in the self-stabilized mode, where locally excitatory recurrence is 

somewhat weaker than in WM, several peaks can be simultaneously formed as long as 

the input remains on. This is demonstrated in Figure 7A. In Figure 7B these three inputs 

have been successfully consolidated and are self-sustained in the WM layer even though 

the input has been removed. In this case, the “Mexican hat” interaction profile, where 

inhibition declines as a function of the distance from the focus of excitation, allows the 

locally excitatory interactions associated with each peak to be isolated by lateral 

inhibition, while keeping the total amount of inhibition in the field relatively low. This 

makes it possible for multiple items to be maintained simultaneously in VWM (see also, 

Trappenberg, 2003). 

Multi-peak change detection. The simulations shown in Figure 7A-D demonstrate 

robust change detection performance when three items are held in working memory. As 

with the single-item case, when a new input that matches one of the original inputs is 

presented (Figure 7C), a new peak fails to be re-ignited in PF, and the model generates a 

“same” response. Similarly, when a new input that does not match one of the original 
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items is presented (Figure 7D), a robust peak is built in PF, which serves as the basis for 

the generation of a “different” response. Note that the model behaves identically when 

three items, rather than one, are presented at test. When all three items match the original 

items, no new peak builds in PF. Conversely, when one of the items is different, a peak 

builds in PF at a location matching the changed input. 

Updating in multi-peak WM. Figures 8A-B show two different forms of updating 

in multi-item VWM. In the first case, the presentation of a new input that is distinct but 

metrically relatively close to the original value produces interference in WM. This leads 

to the deletion of the original peak in WM and its replacement by a peak at the new 

value, that is, the value specified by the peak in PF (compare WM peaks in Figures 7D 

and 8A).  

Figure 8B shows a case where new inputs are presented that are not identical to 

the original inputs, but are too similar to support explicit change detection. Note that the 

scale of the simulations has been changed so that this rather subtle effect is visible in the 

figure. Also, for these simulations, the inputs presented to the model are illustrated in the 

top panel, rather than in the PF layer, with dashed lines representing the first input (S1), 

and solid lines representing the second input (S2), which was presented following a 1000-

ms delay interval. The bottom two panels show the PF and WM layers of the three-layer 

model—Inhib has been left out for simplicity. The dashed lines in PF and WM show the 

patterns of activation in these layers after the offset of the first input. As before, two self-

sustained peaks of activation are present in WM following stimulus offset, and neurons 

representing similar features are inhibited in PF. When the second input is applied, peaks 

try to build in PF, but are unable to do so because of strong inhibition at those locations. 
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However, because WM receives weak direct input when S2 is on, the peaks in WM begin 

to shift in the direction of the new inputs. That is, WM is updated in a continuous fashion 

to reflect the values of the new stimulus, even though the change was not large enough to 

provoke the generation of a “different” response (see Hollingworth & Henderson, 2004). 

Capacity limits in VWM. Thus far, I have demonstrated the functionality of the 

model when the number of items to be remembered (i.e., the number of peaks) is 

relatively small. What happens when the number of items is increased beyond three? 

Figures 9A-C show the consequences of adding more and more items to WM. Although 

the Mexican hat function underlying maintenance in the model allows a multi-peak 

solution of the field dynamics, the capacity of working memory is not unlimited. As more 

items are added to working memory, the net excitatory activation increases, which in turn 

increases the overall amount of inhibition. Figures 9A-B show that the model can stably 

maintain up to four items in WM. However, when two more inputs are added, the level of 

inhibition overtakes excitation, and several peaks drop out of WM, leaving three out of 

the six items in WM. Under these circumstances, if a new input were to be presented that 

matches one of the “forgotten” items, the model would incorrectly generate a “different” 

response by building a peak at that location in PF. 

Selection of inputs for consolidation in working memory. Although the model 

shows robust change detection performance at smaller set sizes, self-sustained peaks can 

fail to be established in WM in some cases even though the number of items to be 

remembered is within the capacity of WM. Thus far, we have assumed that all inputs 

were more or less identical in strength. This is not entirely unreasonable. For example, 

normalization of input strength could be mediated through other layers of perceptual 



www.manaraa.com

 34 

processing not implemented here. It is likely, however, that the strength of perceptual 

inputs arising from different objects in multi-item arrays could vary considerably. Such 

variations might arise through spontaneous fluctuations, or due to factors such as the 

relative salience of the objects (e.g., their relative luminance), or the spatial distribution 

of attention within the display. In this case, less salient objects, or objects that are 

unattended would produce lower amplitude inputs to PF.  This would decrease their 

likelihood of going through the detection instability and their probability of being 

consolidated in WM. 

The simulations presented in Figure 10 show the consequences of presenting 

variable amplitude inputs to the model. For these simulations, the model was presented 

with one strong input, and two relatively weak inputs (Figure 10A). In this case, the 

strongest of the three inputs is successfully consolidated and sustained in WM after the 

input is turned off (Figure 10B), whereas the two weaker inputs remain below threshold. 

However, when the model is probed a short time later (Figure 10C), a second peak has 

formed at the location of one of the weaker inputs. Thus, with variable amplitude inputs, 

the model shows an emergent property of sequential consolidation in WM. In addition, 

these simulations provide a plausible basis for the finding that attended inputs are more 

likely to be consolidated in WM (Schmidt, Vogel, Woodman, & Luck, 2002). 

Discussion 

 The model presented here represents the first neurally-plausible framework that 

addresses both the maintenance of multiple items in VWM and the process of change 

detection. This work demonstrates that the components involved in change detection can 

be realized within a fully integrated neural system operating in real time. Specifically, I 
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presented a series of simulations demonstrating each of the basic components of change 

detection, from initial encoding and consolidation, to maintenance, to comparison and 

updating. The proposed model, therefore, can serve as a useful framework for modeling 

performance in tasks used to probed VWM. 

In addition to capturing existing data, however, a central challenge for any model 

is to make novel behavioral predictions. How does the model perform in this respect? In 

the context of the three forms of neural coding discussed above, space code models have 

the interesting property of metrics. Recall that neurons within each field are 

topographically ordered according to the stimuli that they prefer. As a result, when 

multiple items are held in WM, they interact in specific ways depending on their metric 

similarity. In the context of my model of VWM and change detection, this raises the 

possibility that the relative similarity of the items being held in memory could have 

specific measurable consequences on performance in tasks used to probe VWM. In the 

following chapters, I describe and test two novel predictions arising as a result of close 

metrics in VWM. Specifically, in Chapter 3 I use the change detection paradigm to test 

the prediction that metric-dependent sharpening of peaks in WM will lead to enhanced 

change detection. In Chapter 4, I use a cued color recall paradigm to test a second 

prediction: that metrically-similar items will be repelled away from each other across 

delays. 
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Figure 2. Two-layer neural field model of the type analyzed by Amari (1977). The model 
consists of a single layer of feature-selective excitatory neurons reciprocally coupled to a 
similarly-tuned layer of inhibitory interneurons. Neurons coding for similar values along 
the metric dimension in the excitatory field engage in locally excitatory interactions 
(curved solid arrow), and transmit excitatory activation to the inhibitory layer. Neurons in 
the inhibitory layer transmit broad lateral inhibition back to the excitatory field (dashed 
arrows). See text for additional details. 

 

excitatory 
field 

inhibitory 
field A

ct
iv

at
io

n 

Metric Dimension 

local excitation 

lateral inhibition 



www.manaraa.com

 37 

 
Figure 3. Three basic attractor states arising in the two-layer dynamic neural field model. 
(A) A stable sub-threshold state, where activation at all field sites is negative, reflecting 
the absence of information along the represented dimension. (B) A self-stabilized state, 
where localized peaks of activation, representing the detection of a particular feature 
(e.g., a certain color) in the task space, are formed in the presence of input but decay once 
input is removed. (C) A self-sustaining state where localized peaks of activation are 
maintained in the absence of input, implementing a form of working memory. In each 
panel, input to the model is represented by a dashed line, whereas the pattern of 
activation within the field is indicated by a solid line. 
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Figure 4. The three-layer dynamic neural field model of visual working memory and 
change detection. The model consists of an excitatory perceptual field, PF(u), (A), and an 
excitatory working memory field, WM(w), (C), which are reciprocally coupled to a single 
layer of inhibitory neurons, Inhib(v), (B). The model also includes a response layer (D) 
consisting of two nodes that receive summed excitatory activation from WM and PF and 
are responsible for generating ‘same’ and ‘different’ responses. Excitatory and inhibitory 
patterns of connectivity among the layers are indicated by solid and dashed arrows, 
respectively. In addition, neurons in both PF and WM engage in localized excitatory 
interactions. 
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Figure 5. Simulations demonstrating the emergent functionality of the three-layer model 
in response to a single input. Dashed lines show the input to the model, whereas 
activation within each of the layers is represented by solid lines. (A) With weak input all 
field sites remain below threshold. (B) Detection of strong input in the task space (C) 
When input is removed, the peak decays in PF, but is sustained in the WM layer. (D) 
Formation of a localized region of inhibition in PF centered on value being maintained in 
WM. 
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Figure 6. The generation of “same” (A) and “different” (B) responses in the model. A 
new peak is built in PF only when a new input that is sufficiently different than the value 
being held in WM is presented to the model. (C) and (D) show the updating of WM in 
response to new input. In the first case, the original peak is destabilized and replaced by a 
new peak, whereas, in the second case, a second peak is added to the field without 
destabilizing the original peak. 
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Figure 7. Simulations of the three-layer model in response to multiple simultaneous 
inputs. (A) and (B) show the detection of the inputs by PF, and their consolidation and 
maintenance in WM, respectively. The simulations in (C) and (D) show the generation of 
“same” and “different” responses in the multi-item case. 
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Figure 8. Two different forms of updating in the three-layer model. (A) The presentation 
of a changed input at test results in the destabilization of the original peak in WM and its 
replacement by the new value. In the second case (B), activation in WM is updated in a 
continuous fashion in response to new input. Note, that the scale of the simulations 
shown in (B) have been magnified, and the inputs to the model are now shown in the top 
panel. The first (S1) and second (S2) stimuli presented to the model are indicated by 
dashed and solid lines, respectively. 
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Figure 9. Simulations showing capacity limits in the three-layer neural field model. The 
simulations in (A) and (B) show the model successfully maintaining up to four peaks of 
activation simultaneously in WM. However, when two more items are added (C), 
inhibitory input to WM outweighs excitation, and three of the items fail to be sustained in 
the absence of input. Note that, for simplicity, the inhibitory layer is not shown here.  
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Figure 10. Simulations of the three-layer model with variable amplitude inputs. When 
one strong and two weak inputs are presented to the model (A), the strong input is 
successfully consolidated and maintained in WM (B). In addition, a short time later, one 
of the weaker inputs is also consolidated (C). 
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Table 1 

Parameter Values Used in Chapter 2 Simulations 

 

Layer τ h 
Self- 
excitation 

Excitatory 
projection
s 

Inhibitory 
projections 

Target 
input Noise 

u (PF) 80 -7 cuu = 2.0  cuv = 1.05 ctar = 30 cnoise = .04 
     σuv = 24 σtar = 3 σnoise = 1.0 

     kuv = .05   

v (Inhib) 10 -12  cvu = 2.0    

    σvu = 10    

    cvw = 1.95    

    σvw = 5    

w (WM) 80 -4 cww = 3.15 cwu = 1.5 cwv = .325 ctar = 6  

    σwu = 5 σwv = 42 σtar = 3  

     kuv = .02   

Note: For the variable amplitude simulations shown in Figure 10, the strength of the 
strong input was set to ctar = 30, and the weak inputs to ctar = 20. 
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CHAPTER 3 

ENHANCED CHANGE DETECTION 

WITH CLOSE METRICS 

 

 The model described in Chapter 2 represents the first neurally-plausible model to 

formalize the processes underlying the encoding and maintenance of multiple items in 

VWM and that specifies how same and different responses are generated in change 

detection tasks. In addition, the proposed model makes novel and counterintuitive 

predictions that can be empirically tested using the tools of vision science. In the present 

chapter, I test the prediction that change detection will be enhanced when the items held 

in memory are highly similar. This prediction arises as a result of metric-dependent 

interactions occurring among peaks in VWM. Specifically, when peaks are relatively far 

apart in feature space, reflecting, for instance, memory for multiple highly distinctive 

colors, they either do not interact, or they interact in a weakly inhibitory fashion. In 

contrast, when items are moved closer together in feature space they interact in a strongly 

inhibitory fashion. 

The simulations depicted in Figure 11A-C illustrate one consequence of such 

interactions on the sustained patterns of activation produced in the WM layer of the 

model. Figure 11A shows the patterns of activation across the layers of the model when 

three items are being remembered: two ‘close’ colors that are very similar, and one ‘far’ 

color that is unique. In these simulations, shared lateral inhibition between close peaks 

produces a narrowing of the range of local excitation in WM. This can be seen if one 

compares the relative widths of the self-sustained peaks of activation formed in response 

to ‘close’ versus ‘far’ colors in the WM layer of Figure 11A. This in turn leads to a 

narrower and shallower inhibitory projection from WM to PF via the Inhibitory field (see 

PF in Figure 11A). Figure 11B-C show the consequences of this narrowing on change 

detection performance. 
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Figure 11B shows a simulation trial where one of the close colors changes at test. 

Because inhibition is relatively shallow in PF, when a changed item is presented, an 

above-threshold peak is formed and a ‘different’ response is generated. In contrast, when 

the far item changes by an identical amount (e.g., 30° in color space) at test, the input to 

PF meets with stronger inhibition, which makes it difficult to build a ‘different’ peak in 

response to the new input (see PF in Figure 11C).  

Simulation Experiment 1: Enhanced change detection 

with close metrics 

To quantify the consequences of the metric-dependent interactions described 

above for change detection performance, I conducted a simulation experiment where the 

model was run through a series of trials similar to what a human participant would 

experience. Specifically, on a given simulation trial, the model was presented with three 

inputs, two of which were close together and one that was far away. At test, either one of 

the close targets or the far target was probed with a single test input. The test input was 

presented either at the same location as the corresponding sample input, or at a different 

location 30 units away from this input. Thus, the only thing that varied across trials was 

the item that was probed at test (i.e., whether the probed item was a close or far target). It 

was expected that metric-dependent sharpening of nearby peaks would make it easier to 

detect changes when one of the close targets was probed at test, resulting in better 

performance for close versus far targets.  

Methods 

Model architecture 

The model consisted of the three-layer model with response nodes shown in 

Figure 4, and described in Chapter 2. Each layer in the neural field model contained 361 

feature-selective bistable neurons. 
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Simulation details 

Simulations were conducted in Matlab 7.4 (Mathworks, Inc.) on a PC with an 

AMD Athlon 2.61 GHz dual-core processor. The dynamic field equation (model 

equations and parameters are given in Chapter 2) was integrated using the Euler method 

with one time step = 2 ms. For these simulations, the model was presented with three 

inputs on each trial, corresponding to different colors selected from a continuous 360° 

color space: Two close inputs that were 20, 30, or 40° apart in color space (1 unit in the 

model = 1° in color space), and a single far color that was always at least 150° away from 

the nearest close color. 

Each simulation trial began with a 200-ms relaxation period that allowed the 

model to reach a stable resting state. This was followed by the 500-ms presentation of the 

memory array, and a 1000-ms delay interval. Next, a test input was presented that was 

either identical to one of the initial inputs, or was centered at a different location 30° 

away from one of the memory array inputs. Upon the appearance of the test array, the 

resting level of the nodes in the response layer was increased, which allowed their 

activation to build beyond threshold with suitably strong inputs. Because the nodes in the 

response layer were coupled via strong inhibitory connections, only a single node 

surpassed threshold on each trial. The node whose activation reached threshold first, 

therefore, determined the model’s response. For each close separation condition (20°, 

30°, or 40°), the model completed 400 trials, 100 same and 100 different trials for both 

close and far targets, for a total of 1200 simulation trials. 

Results and Discussion 

Because the model makes a same or different response on each trial, I was able to 

calculate the signal detection sensitivity measure d', as is done with human subjects. 

Simulation results are shown in Figure 13 (black) and demonstrate an advantage for close 

versus far targets. Thus, the model makes a clear prediction: change detection 

performance should be enhanced when similar versus distinct items are held in VWM. 
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The prediction that change detection should be enhanced with close metrics is 

rather striking considering decades of research that has shown just the opposite—that 

similarity among representations in memory leads to impaired performance. For 

example, studies of verbal working memory (Conrad, 1964) have shown that memory for 

phonetically similar words (e.g., “mad, cap, mat, pat, man”) is usually worse than 

memory for phonetically distinct words (e.g., “get, tip, car, mad, buy”). Similarly, 

proactive interference has been shown to impair performance when the same materials 

are repeated across trials (Keppel & Underwood, 1962).  

Do the close advantages predicted by the DFT also appear in human subjects? To 

test this prediction, I conducted a series of change detection experiments probing memory 

for both color (Experiments 1A and 1B) and orientation (Experiment 2). 

Experiment 1A: Enhanced change detection for close colors 

with simultaneous presentation of sample array items 

Methods 

Participants 

Ten University of Iowa undergraduate volunteers (9 women) participated in the 

present experiment. Participants received class credit or monetary compensation for their 

participation. Participants in this and all additional experiments reported normal or 

corrected-to-normal visual acuity and normal color vision. 

Stimuli 

Stimulus presentation and response recording was controlled by a Macintosh G4 

computer running Matlab 5.2 using the Psychophysics Toolbox extensions (Brainard, 

1997; Pelli, 1997). Stimuli were presented against a gray background (28.73 cd/m2) on a 

17” CRT monitor at a viewing distance of 57 cm. Memory stimuli consisted of small 

(1.7° ×  1.7°) colored squares. Individual colors were selected from a set of 180 colors 

equally distributed in CIELAB (1976) color space (centered at CIE L*a*b* coordinates: 

L=70, A=28, B=12), a perceptually uniform color space and color appearance model. 
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Equal distances in CIELAB color space correspond to approximately equal perceptual 

color differences as perceived by a human observer. All colors had equal luminance and 

varied mainly in hue and slightly in saturation.  

 Sample arrays consisted of three items presented simultaneously at least 90° apart 

on the circumference of an imaginary circle centered at fixation and with a radius of 4.25 

cm. Two of the sample array items were close in color space (20°, 30°, or 40° apart), 

whereas the color of the third item was always at least 150° away from the nearest close 

color. The test array contained a single item appearing at one of the spatial locations 

previously occupied by a sample array item (see Figure 12A). Change magnitude was 

fixed at 30º in color space. 

Procedure 

Individual trials began with the appearance of a fixation cross at the center of the 

screen for 500 ms, followed by the 500-ms presentation of the sample array. This was 

followed by a 1000-ms delay interval and the appearance of a test array that remained 

visible until a response was generated. Participants were instructed to make an unspeeded 

response to the test array, indicating whether the color of the test item was the same as or 

different than the item appearing at that location originally. Participants completed a 

practice block of 24 trials, and a total of 240 experimental trials:  40 close and 40 far 

trials at each close color separation (probability of change = 0.5). Finally, to prevent 

verbal recoding of the sample array colors, participants repeated three randomly 

generated digits (e.g., “6,4,9”) out loud at a regular pace throughout each trial. 

Results and Discussion 

 An alpha level of .05 was used as the criterion for statistical significance in all 

experiments, and the signal detection measure d´ was the primary dependent measure.  

An analysis of variance with Target Type (close, far) and Close Separation 

(20°,30°,40°) as within-subjects factors revealed a significant main effect of Target Type, 

F(1,9)=29.82, p < .001. No other effects reached statistical significance, all Fs < 1. As 
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predicted by the DFT, change detection performance was improved when a close color 

was probed relative to performance when a far color was probed (see dark gray bars in 

Figure 13). This effect held whether the close targets were 20, 30, or 40° apart in color 

space. 

These findings confirm the predictions of the model, suggesting that items in 

VWM interact in a metric-dependent fashion. However, before accepting this conclusion, 

it was necessary to rule out an alternative explanation for these results. Because all of the 

colors were simultaneously visible on the screen, and occupied relatively nearby spatial 

locations, it is possible that the enhancement effect reported here reflects differential 

perceptual encoding of close versus far colors, rather than interactions among similar 

items in VWM (see discussion in, Lin & Luck, in press). For instance, low-level contrast 

effects may have made the close colors more perceptually distinct. Or, alternately, 

participants may have remembered differences between the two close colors, rather than 

the colors themselves. To rule out these possibilities, I ran a second experiment where the 

sample array items were presented sequentially at widely separated spatial locations, 

rather than simultaneously at nearby locations. 

Experiment 1B: Enhanced change detection for close colors 

with sequential presentation of sample array items 

Methods 

Participants 

Twelve University of Iowa undergraduate volunteers (7 women) participated in 

the present experiment. 

Stimuli 

The stimuli used in this experiment were very similar to those used in Experiment 

1, with the following exceptions: 1) Stimuli were presented on a 19” CRT monitor, 2) 

stimuli subtended 2.0° × 2.0° of visual angle, and 3) stimuli were presented on the 
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circumference of an imaginary circle with a radius of 7.5 cm, versus 4.5 cm in 

Experiment 1A. 

Procedure 

The procedures were identical to those described for Experiment 1A with the 

exception that sample items were presented sequentially, rather than simultaneously (see 

Figure 12B). Individual trials involved the presentation of three sample array items one at 

a time for 200 ms each, separated by a 500-ms blank interval. Presentation of the third 

item was followed by a 1000-ms delay interval, and the appearance of a single test item, 

as above. Close and far targets appeared with equal likelihood in each probe position (1st, 

2nd, or 3rd), and in all possible orders. Close and far targets were probed equally often at 

each probe position and in each order. Participants completed 48 trials (24 change and 24 

no-change) probing each target type (Close, Far), at each probe position (1, 2, 3), and for 

each close color separation (20°, 30°, 40°), for a total of 864 trials. 

Results and Discussion 

An ANOVA with Target Type, Probe Position, and Close Separation as within-

subjects factors revealed a main effect of Probe Position, F(2,22) = 14.60,  p < .001, 

showing better change detection performance for the most recently viewed item and 

worst performance for the first item viewed (Mean d´: P1 = .88, P2 = 1.0, P3 = 1.47). In 

contrast to the results of Experiment 1A, there was also a main effect of Close 

Separation, F(2,22) = 17.99,  p < .001—change detection performance was most accurate 

when the close colors were separated by 20°, and least accurate when they were separated 

by 40° (Mean d´: 20° = 1.30, 30° = 1.12, 40° = 0.92). Most critically for the present 

purpose, however, there was also a main effect of Target Type, F(1,11) = 24.01, p < .001. 

As in Experiment 1A, change detection performance was enhanced when a close versus a 

far color item was probed (see white bars in Figure 13). These results, therefore, replicate 

Experiment 1A, confirming that the enhancement effect does not reflect differential 

perceptual encoding of close versus far colors. 
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Experiment 2: Enhanced change detection for 

close orientations 

 Results from Experiment 1A-B are consistent with the predictions of the DFT. In 

Experiment 2, I examined whether the enhancement effect is a general property of the 

neural mechanisms that underlie VWM or instead reflects some property peculiar to 

working memory for color. To do this, I used the sequential change detection paradigm 

from Experiment 1B to ask whether this effect generalizes to working memory for 

orientation. 

Methods 

Participants 

Fifteen University of Iowa undergraduate volunteers (10 women) participated. 

Stimuli 

Stimulus presentation and response recording was as in Experiment 1B. Memory 

items consisted of thin, black rounded rectangles that spanned the interior of a small 

light-gray circular background (2.0° in diameter; see Figure 12C). 

 Sample arrays consisted of three items presented sequentially as in Experiment 

1B. Target separations and change magnitudes were selected to match those used for 

color in Experiments 1A-B. Specifically, for each trial, two of the memory display items 

had similar orientations (20º, 30º, or 40º apart), whereas the orientation of the third item 

was at least 70º away from the nearest close orientation (due to the compression of the 

orientation feature space, we could not present the far item 150° away from the close 

items as in Experiment 1B). When a change occurred at test, the orientation of the test 

item was rotated by 30º. Note that, although we attempted to keep the metric details of 

the stimuli consistent across Experiments 1B and 2, the representation of metric structure 

is likely to differ substantially across separate feature dimensions. 

 

 



www.manaraa.com

 54 

Procedures 

All procedures used in this experiment were identical to those reported for 

Experiment 1B. 

Results and Discussion 

 An ANOVA with Target Type, Probe Position, and Close Separation as within-

subjects factors revealed a main effect of Probe Position, F(2,28) = 30.24,  p < .001. As 

in Experiment 1B, change detection performance was best for the most recently presented 

item and worst for the first item viewed (Mean d´: P1 = 1.01, P2 = 1.12, P3 = 2.00). In 

addition, there was a main effect of Close Separation (20º,30º,40º), F(2,28) = 3.40,  p < 

.05, which was subsumed by a significant Target Type × Close Separation interaction, 

F(2,28) = 4.06,  p < .03. Tests of simple effects revealed a significant Target Type effect 

in the 20° close separation condition (see light gray bars in Figure 13), F(1,2) = 7.67, p < 

.02, but not in the 30° or 40° conditions, all F’s < 1. This finding supports the proposal 

that enhanced change detection with close metrics is a general property of working 

memory for metric feature dimensions, rather than a peculiarity of the color system. 

However, not surprisingly, the metric separations at which this effect arises differ across 

the two dimensions probed here. 

General Discussion 

In the present chapter, I conducted three different experiments looking for specific 

behavioral signatures of the processes proposed to underlie working memory in the 

model described above. In particular, I proposed that metric-dependent laterally 

inhibitory interactions among similar items in VWM produces a narrowing of the range 

of local excitation associated with each item. Through the mechanism of change 

detection described in Chapter 2, I showed how such interactions lead to enhanced 

change detection when metrically similar features are remembered. Results from 

experiments probing memory for color and orientation were consistent with this novel 

prediction. 
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These findings are somewhat surprising given that research in the verbal domain 

has consistently revealed performance decrements, rather than improvements, for 

phonetically similar versus dissimilar words (Conrad, 1964). What can account for the 

differences across modalities? One possible source of these discrepant findings is 

differences in the complexity of verbal versus visual stimuli. For instance, the stimuli in 

the experiments reported here consisted of simple visual objects, where a single feature 

needed to be remembered (e.g., its color or orientation). Although the phenomenal 

appearance of color can be decomposed into separate components (e.g., hue, saturation, 

and luminance), the stimuli used here varied primarily in hue, and their similarity in hue 

space was carefully controlled. Visual cortical neurons have been found that are 

specifically selective for the hue component of color (Komatsu, Ideura, Kaji, & Yamane, 

1992). In contrast, even relatively simple words are not so easily defined, and may vary 

along multiple auditory dimensions, including temporal duration, timbre, pitch, and 

loudness, which are represented in a complex and as yet poorly understood fashion by the 

brain (Young, 1998). Thus, a simple word may be more akin to a multi-feature object 

(e.g., a colored, tilted, rectangle) than a simple visual feature (e.g., the color blue). It is 

unclear whether the enhancement effects found here would arise in more complex multi-

feature objects whose similarity varies along multiple dimensions. 

Another possible source of differences has to do with the responses required in 

each task. In the change detection experiments reported here, participants saw one visual 

display, and generated a 2-AFC response at test, indicating whether a test item was the 

same as or different than a corresponding item in the memory display. Thus, the change 

detection task places relatively modest non-memory demands on participants. In the 

classic phonological similarity experiments of Conrad (1964), however, participants 

heard a list of words that they were required to remember, and were asked to recall as 

many of these words as they could at test. Although simple, the need to verbally recall 

each of the remembered words may have interfered with the storage of the other words in 
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the list. If more similar words are somewhat more prone to disruption, this would explain 

the difference. 

 The present study reveals a direct behavioral consequence of the dynamic neural 

processes supporting maintenance in the DFT. This finding is counterintuitive given 

previous research showing interference effects for similar items in a variety of memory 

tasks. It also runs counter to the predictions of other neural approaches to maintenance in 

VWM (see, e.g., Raffone & Wolters, 2001). Such models achieve independent memory 

representations via temporal synchrony. It is not clear how the metric-dependent effects 

reported here might arise from this neural mechanism. The present findings, therefore, 

place strong constraints on models addressing the nature of and mechanisms underlying 

visual working memory. 
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Figure 11. Simulations showing differences in patterns of activation in WM and PF as a 
function of metric similarity among items. Shared lateral inhibition between nearby items 
(i.e., similar colors) narrows the range of local excitation in WM, and, as a result, the 
strength and width of feedback inhibition to PF during the delay interval of a change 
detection task (A). Because the inhibition associated with the close peaks is weaker and 
narrower in PF, changes are easier to detect when one of the two close targets changes 
(B), versus the far target (C). 
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Figure 12. Stimuli and procedures from Simulation Experiment 1, Experiments 1A-B and 
Experiment 2. The sequence of events in a single trial in simulations and Experiments 1 
and 2 using simultaneous (A) and sequential (B-C) change detection paradigms probing 
color and orientation, respectively. 
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Figure 13. Results from Experiments 1A-B, Experiment 2, and model simulations 
showing enhanced change detection for metrically-similar colors and orientations. In 
each case, performance was reliably better for ‘close’ versus ‘far’ targets.  

Experiment 1 Experiment 2 

Simulations 
Exp 1A 
Exp 1B 



www.manaraa.com

 60 

Table 2 

Parameter Values Used in Simulation Experiment 1 

 

Layer τ h 
Self- 
excitation 

Excitatory 
projection
s 

Inhibitory 
projections 

Target 
Input Noise 

u (PF) 80 -7 cuu = 2.0  cuv = 1.05 ctar = 30 cnoise = .04 
     σuv = 24 σtar = 3 σnoise = 1.0 

     kuv = .05   

v (Inhib) 10 -12  cvu = 2.0   cnoise = .04 
    σvu = 10   σnoise = 1.0 

    cvw = 1.95    

    σvw = 5    

w (WM) 80 -4 cww = 3.15 cwu = 1.5 cwv = .325 ctar = 6 cnoise = .04 

    σwu = 5 σwv = 42 σtar = 3 σnoise = 1.0 

     kuv = .02   

Different   80 -5 cdd = 1.85 cdu = 1.0 cid = 14  cnoise = .1 

Same  80 -5 css = 1.85 csw = .05 cdi = 14  cnoise = .1 
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CHAPTER 4 

MUTUAL REPULSION BETWEEN CLOSE FEATURES 

IN VISUAL WORKING MEMORY 

 

The present chapter reports an experiment designed to test a second prediction 

arising as a result of close metrics in VWM: that laterally inhibitory interactions among 

items will lead to mutual repulsion between nearby peaks. This arises as a result of 

overlapping inhibition, which is stronger in-between nearby peaks than it is on the “outer 

side” of each peak (see close peaks in Figure 14A). As a result, it is easier for the 

excitation associated with each peak to grow in a direction away from the other peak (i.e., 

away from the other item in memory) across the delay interval. This leads to the 

prediction that when similar features are held in VWM, recalled estimates of these 

features will be systematically biased away from each other over delays. In contrast, 

memory for unique (i.e., “Far”) features should not be systematically biased, and recalled 

estimates should be comparable to performance when only a single item is remembered. 

Simulation Experiment 2: Mutual repulsion between 

close features in VWM 

 As in Chapter 3, a simulation experiment was run to quantify the magnitude of 

repulsion induced by close metrics in the model. I began by measuring repulsion using 

the same model and parameters as used in Simulation Experiment 1. These simulations 

revealed a small but reliable repulsion effect of approximately 1° in each direction, a 

rather modest effect. Further simulations revealed that to get robust repulsion, the width 

of the self-excitatory component of the interaction function for the WM field (σww) 

needed to be wider than it was in Simulation Experiment 1. Recall that repulsion effects 

emerge in the model when inhibition is stronger on one side of a peak versus the other, 

allowing excitation to build more easily in that direction. When the width of excitatory 

interactions within WM is very small, there is little difference in the excitatory/inhibitory 
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gradient on either edge of a peak because the peak effectively samples neural interactions 

across a very limited range. As a result, peaks in the model show very little repulsion. 

Thus, to explore repulsion in the model in greater detail, I modified the network in two 

ways. First, I increased σww from 3 to 5. Second, to prevent the close peaks from fusing 

together on every trial, I also increased the size of the field to 540 neurons and re-scaled 

the mapping from neuronal units in the model to degrees in color space such that 1.5 

units in the model equaled 1 degree in color space. With these modifications, the model 

produced robust repulsion.  

Methods 

Model architecture 

The model architecture was identical to the three-layer model used in Simulation 

Experiment 1 and described in Chapter 2, with the exception that no response nodes were 

used, and the field size was increased from 361 to 541 units. Thus, each 1.5 units in the 

model represented 1° of color space, rather than the one-to-one mapping of units to 

degrees used in the simulations reported in Chapter 2. Parameter modifications for these 

simulations are shown in Table 2. 

Simulation details 

For these simulations, the model was presented with either a single input (SS1 

condition) or three inputs (SS3 condition) on each trial: two close inputs presented at the 

same two locations 20° apart in color space, and a single far input that was selected 

randomly with the constraint that it was always at least 150° away from the nearest close 

input. Each trial consisted of a 200-ms pre-relaxation period, the presentation of inputs 

for 800-ms, a 1000-ms delay interval, and a 3000-ms response interval, after which the 

model’s estimate was determined. The model was run through 200 SS1 trials, and 600 

SS3 trials: 400 trials probing the close inputs (200 CW and 200 CCW), and 200 probing 

the far inputs, for a total of 800 trials. 
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Results and Discussion 

Recall simulations 

To determine estimation errors in the model, I calculated the distance (in degrees) 

between the actual location of the input, and the location of the mean of the cluster of 

above-threshold activation defining the peak in the WM field associated with the cued 

item. Although this is clearly a simplification of the processes that are likely to be 

involved in making such a response, this mapping to recalled estimates has been used 

extensively in the spatial working memory literature (see, e.g., Schutte, Spencer, & 

Schöner, 2003; Simmering et al., 2008). 

Results are shown in Figure 14B. As can be seen, color estimates in the SS1 

condition were very close to zero, as were estimates of the Far target in the SS3 

condition. In contrast, estimates of the CW and CCW targets were biased away from each 

other by ~5° in each direction. A sample repulsion trial in the SS3 condition is illustrated 

in Figure 14A. 

Change detection simulations 

 The modified model shows a robust repulsion effect. However, to obtain this 

effect I needed to modify the model in several ways (see Table 2). Can the enhancement 

effect found in the change detection simulations reported in Simulation Experiment 1 also 

be achieved with the new model and new parameter set? To determine this, I re-ran the 

change detection simulations described above using the modified model. The primary 

difference between the change detection and recall simulations was the length of time 

that the model was run. For the recall simulations, I added on a 3s period at the end of the 

delay interval as a stand-in for the time needed to make a recall response. In contrast, for 

the change detection simulations, a test input was presented at the end of the delay 

interval, which led to the generation of a same or different response by the model. Thus, 

for recall, peaks were free to keep drifting for some period of time after the delay interval 

was over, whereas for change detection, new inputs came into the field precisely at the 
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end of the delay. Results revealed a 4% improvement in performance for close versus far 

targets, which was comparable to the enhancement effect found in Simulation 

Experiment 1. Thus, the model used in this chapter was able to produce both repulsion 

between close peaks in the context of recall and an enhancement effect for close colors in 

change detection.  

Experiment 3A: Mutual repulsion between 

close colors in VWM 

The simulations reported above make the prediction that close features in WM 

interact in an inhibitory fashion, and that these interactions can lead to mutual repulsion. 

To test this rather subtle prediction, a measure of VWM that is more sensitive than the 

change detection task used in Experiments 1A-B and Experiment 2 is needed. For this 

purpose, I developed the cued color recall task depicted in Figure 15. The basic structure 

of each trial was very similar to a typical trial in the change detection experiments 

reported above, with the exception that participants made a cued color recall response 

following the delay, rather than a 2-AFC same/different response. Specifically, for each 

trial, participants were shown a sample array that contained two similar colors and one 

distinct color presented at widely separated spatial locations. After a brief delay, a 

continuous color wheel was presented around one of the three target locations, cueing the 

participant to estimate the color that had appeared at that location originally. Participants 

estimated the remembered color by moving a mouse cursor to the color on the color 

wheel that matched the color being held in working memory. 

Methods 

Participants 

A total of 12 undergraduate students (7 Women) participated in this experiment 

for course credit. All participants reported normal or corrected-to-normal visual acuity 

and normal color vision. 
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Stimuli 

All stimuli were presented on a 30” LCD monitor1 with a gray background (28.73 

cd/m2), using custom software developed in Visual Studio 2005. The viewing distance 

was 57 cm. Sample arrays consisted of either 1 or 3 small (1.9° x 1.9°) colored circles. As 

in Experiments 1A-B, individual colors were selected from a set of 180 colors equally 

distributed in CIELAB (1976) color space (centered at CIE L*a*b* coordinates: L=70, 

A=28, B=12). Each stimulus was centered on an invisible circle with a radius of 7.5° 

from the center of the screen, with a minimum distance between targets of 80 degrees of 

angular rotation (see Figure 15). 

For set size 3 (SS3) trials, two of the sample colors were always close in color—

one clockwise (CW) target, and one counter-clockwise (CCW) target 20º apart in color 

space—whereas the third color was always at least 150º away from the nearest close 

color. For set size 1 (SS1) trials, a single color was randomly chosen from the 180 

possible colors making up the color space. However, to prevent possible carry-over 

effects from trial to trial, the choice of sample array colors in both conditions was 

constrained such that none of the sample colors used on trial N were within +/- 40° in 

color space of the color that was estimated on trial N-1. 

  Each trial began with the 800-ms presentation of a sample array. This was 

followed by a 1000-ms delay interval and the appearance of a test array that remained 

present until a response was made. The test array contained a color wheel with an 

outlined white circle at its center whose size and location matched one of the original 

sample array items. The color wheel contained each of the 180 possible sample colors 

                                                 
1 The monitor used here is both larger (30” versus 17” in Experiment 1A, and 19” in 

Experiments 1B and 2), and of a different type (LCD versus CRT) than those used in the change 
detection experiments reported above. Differences in color reproduction characteristics across 
monitors could lead to a different pattern of results depending on the monitor used. However, a 
somewhat different study testing the same idea has been run using the 17” CRT monitor used in 
Experiment 1A. The results replicated the findings reported below. 
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equally distributed along a “color wheel” in CIELAB (1976) color space. The appearance 

of the color wheel at a particular location cued the participant to estimate the color that 

had appeared there originally. Estimates were made by moving a set of crosshairs over 

the color wheel using a computer mouse, and left-clicking on the color that most closely 

matched the color being held in memory. After the response, the outlined circle was 

replaced by the original sample array color, and a second set of crosshairs appeared over 

the correct location on the color wheel. Accuracy was stressed rather than speed, and 

estimation responses were not timed. To prevent spatial strategies from affecting color 

estimates, the orientation of the color wheel was randomized across trials. In addition, the 

color wheel was presented in a standard and a mirror reversed fashion, where the 

direction of colors within the wheel went in the opposite direction. 

At the beginning of the experiment, participants read a written description of the 

task, and the experimenter demonstrated the stimuli and procedures.  Participants then 

completed 24 practice trials followed by 240 experimental trials: 80 SS1 trials and 160 

SS3 trials (80 close color trials and 80 far color trials). Because I was specifically 

interested in how estimation performance would differ for the two close color targets, 

half of the close color trials probed the CW close color and the other half probed the 

CCW close color. All trial types were randomly intermixed. Participants were offered a 

short break after every 24 trials, and the entire experimental session lasted ~30-40 

minutes. 

Finally, to prevent verbal recoding of the sample array colors, participants 

repeated three randomly generated digits (e.g., “6,4,9”) out loud at a regular pace 

throughout each trial. 

Results and Discussion 

 The primary dependent measure in the present experiment was mean directional 

error in color space (in degrees). To arrive at this value, for each trial, I computed the 

angular difference between the position of the cued color and the position on the color 
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wheel that was selected by the participant. Errors that were clockwise from the cued color 

in color space were assigned positive values, whereas errors that were counter-clockwise 

were assigned negative values. For trials where the direction of colors in the color wheel 

were mirror reversed, the sign of the errors was flipped to maintain consistency. 

 Recall that the model predicts specific patterns of errors depending on whether the 

cued color was a close or a far target, and, for the close targets, on whether the close 

target was a CW or CCW target. Specifically, because the far target is presumed to be 

outside the range of strong lateral interaction in VWM, there should be no systematic 

biases to this target. That is, mean error for the far target should not be significantly 

different from mean error found in the SS1 baseline condition, where only a single color 

was remembered on each trial. In contrast, errors to the two close targets should be biased 

in opposite directions (i.e. repelled from each other), depending on their relative positions 

in color space. Specifically, mean error to the CW targets should be positive (i.e., further 

clockwise in color space), whereas errors to the CCW target should be negative (i.e., 

further counter-clockwise in color space). 

 Overall, mean directional errors to targets in the SS1 condition were very small 

and slightly negative (Mean error = -2.14º). Nonetheless, a one-sample t-test revealed 

that this bias was significantly different from zero error, t(11) = 2.345, p < .04. Although 

the origin of this slight CCW error is unclear, the systematic deviations with set size 1 

suggest that there is some estimation bias in the recall task, even when only a single 

target is held in memory across a short delay. 

Figure 15 shows mean directional errors for the Far, CW, and CCW targets in the 

SS3 condition. Given the small but systematic CCW bias found in the SS1 condition, we 

normalized the errors shown here with respect to the -2.14 baseline error estimate. An 

ANOVA comparing performance in the CW, CCW, FAR, and SS1 conditions revealed a 

significant main effect of target, F(3,33) = 8.51, p < .001. Errors to the Far target in the 

SS3 condition were nearly identical to errors in the SS1 condition (Mean difference = 
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.37º). This was confirmed in a paired-samples t-test, t(11) =  .312, p = .761. Thus, 

estimates of the Far target do not appear to be strongly influenced in a systematic way by 

the other two colors being held in VWM, in keeping with the first prediction discussed 

above. 

 By contrast, errors to the CW and CCW targets differed substantially from errors 

in the SS1 condition, and were biased in opposite directions. Specifically, estimates of the 

CW target were biased in a positive direction, whereas estimates of the CCW target were 

biased in a negative direction, as predicted. This was confirmed in a paired-samples t-test 

comparing the CW and CCW conditions, t(11) = 5.05, p < .001. 

 The results reported here support the second prediction of the DFT, suggesting 

that laterally inhibitory interactions can lead to mutual repulsion between metrically-

similar items in VWM. This finding runs counter to what would be expected on the basis 

of existing theories of VWM. For instance, a prevalent idea in the literature is that VWM 

stores a fixed number of discrete, slot-like representations (Zhang & Luck, in press). If 

representations in VWM were truly discrete, one would not expect the kinds of 

interactive effects demonstrated here. 

A similar idea is embodied in the neural synchrony model of Raffone and Wolters 

(2001) discussed above. According to this model, the features of objects are represented 

by distinct subpopulations of neurons, and are maintained separately in VWM. As a 

result, there is no basis in such models for the type of interactions found here. 

Experiment 3B: Mutual repulsion between close colors in VWM 

with dense sampling 

 Experiment 3B was identical to Experiment 3A with the exception that 

participants completed many more trials. This allowed the data to be fit using the 

Resolution, Accuracy, and Capacity (RAC) model proposed by Zhang (2007). This 

model makes it possible to separately measure the resolution and accuracy of the 

representations stored in VWM, as well as the number of items that were stored. The 
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basic logic of this approach is that, if the observer stores the probed item in memory, 

estimation responses will be near the original value. Conversely, if the item was not 

stored in memory, responses should be random and uniformly distributed throughout the 

360º color space. These two types of trials wind up being mixed together in the data, 

making it difficult to separate out variance reflecting the resolution of the VWM 

representations themselves, from variance arising as a result of random guesses. The 

model of Zhang proposes a method whereby the components of the response distribution 

representing these different types of trials can be recovered using standard estimation 

procedures. This procedure decomposes the observed data into three parameters: the 

width (quantified as the standard deviation [SD], σ) and central tendency (quantified as 

the mean, µ) of the distribution, representing trials where the item was stored; and the 

height of the tails of the mixed distribution, representing the probability that the probed 

item was stored in memory (probability of encoding, Pe). 

Thus far, this framework has been used as a means of clarifying the nature of the 

capacity limits in VWM. Towards this end, the majority of work done within this 

framework has focused on the number of representations that can be stored, and their 

precision (see Zhang, 2007). Results have shown that precision (i.e., σ) is high (σ is low) 

when only one item must be remembered, and decreases as the set size is increased 

toward the capacity of VWM. As set size increases beyond capacity, precision plateaus 

and the probability of encoding decreases, providing support for the notion that VWM 

“slots” are fixed in number and have a fixed resolution/precision. Note that Zhang (2007) 

only probed memory for distinctive items; this might explain why mean estimates were 

always near 0 error. In this context, evidence of mean shifts for CW and CCW targets 

with dense sampling and using a robust response estimation procedure would constitute a 

significant test of the robustness of the DFT’s predictions. Furthermore, the use of the 

estimation procedure developed by Zhang allows us to probe whether close vs. far items 

are represented with the same precision.  
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Methods 

Participants 

 A total of 9 students (6 Women) participated in this experiment in exchange for 

monetary compensation. All participants reported normal or corrected-to-normal visual 

acuity and normal color vision. 

Stimuli and Procedures 

 Stimuli and procedures for this experiment were identical to Experiment 3A, with 

the exception that many more trials were completed. The increase in trials was needed for 

robust estimation of distribution parameters using the method developed by Zhang 

(2007). Participants completed 160 SS1 trials, 320 Close trials (160 CW, 160 CCW), and 

320 Far trials. In addition, participants completed 32 practice trials at the beginning of the 

experiment, for a total of 832 trials. The experimental session lasted approximately 1.5 

hours, and was completed in a single session. Participants were offered breaks at regular 

intervals, and were encouraged to leave the testing room for a longer break half way 

through the experiment to prevent fatigue. 

Results and Discussion 

The parameters of the response distributions for each participant and each target 

type (SS1, Far, CW, CCW) were estimated using the method developed by Zhang (2007). 

Overall, seven out of nine participants produced the expected repulsion effect. An 

additional two participants showed the opposite pattern of results, showing substantial 

attraction toward the other close color in memory (Mean CW error = -7.85º; Mean CCW 

error = 3.91º). It isn’t clear what led to these differences, but this may reflect the fusion 

limit case in the DFT, where peaks of activation that are close together and relatively 

unstable merge into one peak as a result of strong mutually-excitatory interactions. 

Interestingly, the pattern of results for SD and Pe for these participants was similar to the 

group showing repulsion. Nevertheless, because these participants showed a qualitatively 

different pattern of bias, they are not considered further here. 
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Average obtained parameter estimates from the remaining seven participants are 

plotted in Figure 16. The full distribution of responses obtained in Experiment 3B and in 

the simulations that follow can be seen in Figure 18. As in Experiment 3A, mean 

directional errors in the SS1 condition were small and biased in a slightly 

counterclockwise direction (M = -1.19º). A one-sample t-test revealed that errors in this 

condition were again significantly different from zero, t(6)=-2.99, p < 0.03. Thus, in each 

experiment there was a small counterclockwise bias for targets in the SS1 condition. 

Figure 16A shows mean directional errors in the Far, CW, and CCW conditions. 

As before, mean errors were normalized with respect to the -1.19º bias found for SS1. An 

ANOVA comparing performance in the SS1, Far, CW, and CCW conditions once again 

revealed a significant main effect of target, F(3,18)=16.98, p < .01 Follow-up paired-

samples t-tests revealed that SS1 and Far did not differ significantly, t(6)=1.84, p > 0.10, 

although mean directional errors were slightly more negative for Far (M = -2.69º) versus 

SS1. Additionally, mean errors to the CW and CCW targets differed substantially from 

mean errors in the SS1 condition, and were biased in opposite directions. Once again, 

estimates of the CW target were biased in a positive direction, whereas estimates of the 

CCW target were biased in a negative direction. This was confirmed in a paired-samples 

t-test comparing the CW and CCW conditions, t(6)=4.91, p < .01. Thus, results for this 

group of participants replicate the pattern of performance found in Experiment 3A, in 

keeping with the predictions of the DFT. 

 Average estimates of the standard deviation of the response distributions across 

each condition are shown in Figure 16B. As with the mean directional errors, an ANOVA 

revealed a significant main effect of target (SS1, Far, CW, CCW), F(3,18)=22.50, p < 

.01. As can be seen, responses were less variable (smaller SD) when a single item was 

held in memory, versus three items, in keeping with Zhang (2007). This was confirmed in 

a paired-samples t-test comparing SS1 to SS3, t(6)=-8.79, p < .001. 
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To test whether average resolution differed for close versus far targets in the SS3 

condition, a separate ANOVA was conducted. This analysis revealed a significant main 

effect of target (Far, CW, CCW), F(2,12)=4.97, p < .03. Follow-up paired comparisons 

revealed that the SDs for Far and CW differed significantly, t(6)=2.48, p < .05, but no 

other comparison reached significance, all ps > .07. These results suggest that the 

resolution of items stored in WM varies depending on metric similarity, in contrast to the 

fixed-resolution hypothesis. 

Finally, with respect to the parameter Pe (Figure 16C), which represents the 

probability that the probed item was encoded in memory, an ANOVA revealed a 

significant main effect of target (SS1, Far, CW, CCW), F(3,18)=12.20, p < .01. As with 

SD, clear differences emerged between the SS1 and SS3 conditions. Although encoding 

likelihood was rather high in each case, the probability that the probed item was encoded 

in memory was higher when one item was to be remembered. This was confirmed in a 

paired-samples t-test comparing SS1 to the average obtained Pe in the SS3 condition 

t(6)=4.51, p < .01. 

An ANOVA was also run to determine if close and far targets varied in terms of 

Pe. This analysis revealed a significant main effect of target (Far, CW, CCW), 

F(2,12)=5.46, p < .03. Follow-up t-tests revealed that the Far target was less likely to be 

encoded than the CW target, t(6)=-2.71, p < .04, but not the CCW target, t(6)=-2.15, p > 

.07. Pe did not differ for CW and CCW targets, t(6)=1.09, p > .3. 

The results of Experiment 3B replicate the primary findings of Experiment 3A, 

showing clear evidence of repulsion between nearby colors in VWM, and equivalent, 

small counterclockwise biases in the SS1 condition and for far colors in the SS3 

condition.  In keeping with the findings of Zhang (2007), resolution was found to be 

better in the SS1 versus SS3 condition, and Pe was lower when one versus three items 

needed to be encoded. Interestingly, Pe was also found to vary for close versus far targets 

in the SS3 condition, with a higher likelihood of encoding the close colors. This may 
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have reflected differential attention to close versus far targets due to the simultaneous 

presentation of the memory display elements. In addition, there was a significant 

difference in the precision of response estimates to the Far vs. the CW target. This is not 

consistent with the proposal that the resolution of items in VWM is fixed. Rather, this 

finding suggests that the precision of items can vary depending on their metric similarity. 

It is important to note, however, that the precision of response estimates to the Far and 

CCW targets did not differ significantly, suggesting that this similarity effect is quite 

subtle in nature. 

Experiment 3B Simulations 

 The simulations reported here follow up on the simulations reported in Simulation 

Experiment 2. Those simulations accurately predicted that memory for close items in 

VWM would show a repulsion effect in the cued recall task. The question I probe here is 

whether the DFT can also account for other aspects of the data obtained in Experiment 3, 

such as the pattern of SDs and Pe. To determine this, I ran another series of simulations 

and obtained fits of the model data using the method developed by Zhang (2007). That is, 

I ran the model through large numbers of trials, generated response distributions for each 

condition, and then estimated parameters of these response distributions using the same 

method used with the empirical data. The question was whether I could quantitatively fit 

all parameters of the empirical distributions. Such fits would suggest that the DFT not 

only captures the shift in mean directional errors, but also captures effects related to the 

precision of VWM representations as well as the likelihood that such representations are 

successfully consolidated and maintained in VWM. 

Methods 

Model Architecture 

 The model architecture used here was identical to the model used in Simulation 

Experiment 2. However, several parameters were modified to provide precise quantitative 

fits to the empirical results (see Table 3 notes). 
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Simulation details 

The simulations reported here were identical to those conducted in Simulation 

Experiment 2, with the exception that the model was run through 500 trials per condition, 

rather than 200. 

Results and Discussion 

 Obtained fits to the simulation data are shown in Figure 17, and the full 

distribution of responses made by the model in each condition are shown in Figure 18 

(right column). Obtaining model fits for the model data was achieved in several steps. 

First, the raw data from the simulations was inspected, and missing values where one or 

more peaks were lost (due to stochastic fluctuations in the field which can de-stabilize 

peaks) were replaced with a number between -180 and 180 drawn from a uniform random 

distribution. This was used as a stand-in for guessing trials, where participants have no 

information about the cued target in memory, and contributed to the estimation of Pe.  

Second, simulations revealed that variance was relatively low in the model data 

(SDs were < 3° in all cases). Although SDs < 3° are typical for behavioral performance in 

spatial recall tasks (see, e.g., Spencer & Hund, 2002), these values are quite low relative 

to the empirical data from the color recall task. It is likely that the higher variance in the 

empirical data reflects both noisy VWM representations as well as noise introduced by 

the color estimation procedure where participants had to map a remembered color onto a 

randomly oriented color wheel.  

To capture this second source of noise, which was not contained in the DFT, I 

implemented a procedure that added a random number to the model’s estimation 

responses. Critically, the same random process was used across all conditions. The 

procedure involved taking the obtained estimation response on a given trial and adding to 

it a random number drawn from a Gaussian distribution with a given standard deviation. 

The Gaussian had a mean of zero, and a standard deviation was chosen that increased the 

overall variance into the range obtained in Experiment 3. Thus, the procedure was meant 
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to increase the overall variance in the model data, so that RAC fits could be obtained, 

without changing the relative amounts of variance across each condition. 

Estimates of the mean directional errors from obtained fits of the model response 

distributions are shown in Figure 17A. Not surprisingly, the model captured the pattern of 

little to no systematic error in the SS1 and Far conditions, and substantial error in the 

Close condition, with CW and CCW targets moving in opposite directions across the 

delay. 

RAC estimates of SDs can be seen in Figure 17B. The model produced small 

differences in SD for SS1 versus SS3 targets, in keeping with the findings of Zhang 

(2007) and Experiment 3B. However, the difference between SS1 and SS3 was much 

smaller than was seen in the data, and variance for the Far, CW, and CCW targets did not 

separate out to the same extent. 

Finally, estimates of Pe from the model data can be seen in Figure 17C. The 

model accurately captured the finding of high Pe in SS1 and lower Pe for the close targets 

in the SS3 condition. However, the model substantially overestimated Pe for far targets. 

This was due to the fact that, in the SS3 simulations, when a peak was lost, it was always 

one of the two close peaks. This was caused by the same mechanism that produced the 

shift in the mean for these targets—strong lateral inhibition from a nearby target in WM. 

In the absence of strong competition from nearby targets, the far peak was never 

destabilized during the delay or the response interval. 

In summary, the model was able to capture several aspects of the data reported in 

Experiment 3B. Mean directional errors followed the predicted pattern across each 

condition. Additionally, SDs were somewhat higher overall when three items versus one 

item was held in memory, and Pe was lower overall for targets in the SS3 condition. 

However, overall variation in obtained errors was much lower than was found in the 

experiments reported here, and differences in Pe for far versus close targets was not 

reproduced by the model. 
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There are several possible explanations for the model’s divergence from the data. 

First, lower estimates of variance by the model were likely due in part to the procedure 

used to calculate errors. Recall that estimation errors in the model were determined by 

calculating the difference between the actual target location and the centroid of the peak 

in WM at the end of the simulation. As noted above, this procedure only accounts for 

variance arising as a result of differences in the position of the peak in WM across trials, 

and ignores variance that may arise at other points in the trial. For instance, the process of 

mapping the color in memory onto the color wheel may serve as an additional source of 

variation affecting responses. Given the relatively small size of the color wheel, small 

variations in the exact placement of the mouse cursor on the color wheel can lead to large 

increases in variable error across trials.  

The model’s underestimation of Pe may reflect another simplification 

implemented here. For these simulations, all three items were presented to the model 

simultaneously with equal strength on every trial. However, it seems reasonable to 

assume that variations in the amplitude of inputs across trials could produce cases where 

the far target is lost, either at the point of encoding, or shortly after a peak is established 

in WM, as seen in the variable amplitude simulations reported in Chapter 2. Additionally, 

variations in attention from trial-to-trial may also increase the likelihood of losing the far 

target on a given trial. This would occur if participants tend to focus more of their 

attention on the two similar items, in an effort to differentiate and accurately encode them 

in memory. If this is the case, one would expect that differences in Pe for close versus far 

targets would disappear in a sequential presentation variant of the task. 

General Discussion 

 The results reported here provide strong support for the predictions of the DFT. In 

two separate experiments, I found clear evidence of metric interactions in WM leading to 

mutual repulsion between close colors. In contrast, single color estimates and estimates of 

a far color in the SS3 condition were not systematically biased. This suggests that items 
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in working memory interact as a function of how similar they are along the represented 

dimension. When items are very far apart along the represented dimension, they interact 

only weakly or not at all. However, when items are more similar, they interact through 

strong locally excitatory and laterally inhibitory connections. Such interactions can 

systematically distort the representations of remembered stimuli, leading to mutual 

repulsion in the context of recall, or improved performance in the context of change 

detection, as demonstrated in Chapter 3. 

In addition to influencing the accuracy of memory for metric information, 

interactions among items in WM may also affect the resolution of WM representations. 

This was suggested by the finding of improved resolution (i.e., lower SDs) in the SS1 

versus SS3 condition. These findings run counter to several recent proposals regarding 

the nature of storage in WM (see, eg., Raffone & Wolters, 2001; Zhang, 2007; Zhang & 

Luck, in press). For example, Zhang and Luck have proposed a model wherein VWM 

stores a small number of fixed resolution representations. Thus, the finding of improved 

resolution with one versus several items in memory would seem to run counter to this 

proposal. However, they argue that when VWM is not filled to capacity, multiple samples 

of the remembered item can be stored and averaged together when making an estimate, 

thereby reducing estimation variance. In Experiment 3B, however, I also found 

significant differences in SD across targets in the SS3 condition. Recall that the data 

fitting procedure used here allows variance to be estimated without being influenced by 

random guessing on trials where no information about the cued value was retained in 

memory. As a result, any differences in variance cannot be attributed to failures of 

encoding or maintenance. Thus, these results are clearly at odds with the proposal of 

Zhang and Luck.  

In conclusion, the findings reported in the present chapter provide strong support 

for the predictions of the DFT. Although the model simulations of Experiment 3 did not 

capture all aspects of the obtained data with high fidelity, I was able to demonstrate that 
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metric dependent interactions among items in memory can lead to systematic changes in 

the nature of the representations stored. Such changes can include distortions in the 

feature values that are remembered, changes in the resolution of the stored 

representations, and changes in the likelihood that a given item will be maintained in 

memory throughout the delay. 
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Figure 14. Example simulation and results from Simulation Experiment 2. (A) The model 
performing a single trial in the color estimation task. In this example, the model 
incorrectly estimates the two close colors to be further away than they really are, whereas 
estimation of the far color remains accurate. (B) Results of a full simulation experiment 
showing the predicted repulsion effect and no estimation errors in the SS1 and Far 
conditions. 
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Figure 15. Stimuli, procedures and results for Experiment 3A. 
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Figure 16. RAC estimates of the three parameters, Mean, SD, and Pe obtained in 
Experiment 3B. 
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Figure 17. RAC estimates of the three parameters, Mean, SD, and Pe obtained in 
Experiment 3B simulations. 
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Figure 18. Frequency histograms of obtained errors in Experiment 3B and simulations. 
The leftmost column shows the distribution of responses across all participants showing 
repulsion in Experiment 3, the middle column shows distributions for a single subject 
from Experiment 3, and the rightmost column shows error distributions obtained from the 
model. Means, SDs, and Pe values are inset in each plot. In each case, errors in the SS1 
and Far conditions are near zero. In contrast, estimates of the CW target are shifted 
slightly to the right (positive), whereas CCW target estimates are shifted to the left 
(negative). 
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Table 3 

Parameter Values Used in Simulation Experiment 2 

and Experiment 3B Simulations 

 

Layer τ h 
Self- 
excitation 

Excitatory 
projections 

Inhibitory 
projections 

Target 
input Noise 

u (PF) 80 -7 cuu = 2.0  cuv = 1.15 ctar = 30 cnoise= .10 

   σuu = 3  σuv = 24 σtar = 3 σnoise= 1.5 

     kuv = .05   

v (Inhib) 10 -12  cvu = 2.0   cnoise= .10 

    σvu = 10   σnoise= 1.5 

    cvw = 1.5    

    σvw = 13    

w (WM) 80 -4 cww = 3.15 cwu = 1.5 cwv = .325 ctar = 6 cnoise= .10 

   σww = 5 σwu = 3 σwv = 28 σtar = 3 σnoise= 1.5 

     kwv = .02   

Note: For Experiment 3B simulations, cwv=.20, kwv = .06, cnoise= .08, and σnoise= 2.75
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CHAPTER 5 

CONCLUSIONS AND GENERAL DISCUSSION 

 

Summary and findings 

The present project developed a new approach to visual working memory and 

change detection based on the principles of the Dynamic Field Theory that bridges the 

gap between neural and behavioral levels of theorizing. Although theories at the 

cognitive level have maintained a tight back and forth with behavioral research looking at 

VWM, such theories have not been formulated at the level of neural processes, and have 

not addressed the comparison process in change detection. Conversely, theories at the 

neural level have shed light on the biophysical and neurodynamical properties of the 

neural systems supporting maintenance in working memory, but have made little contact 

with the human behavioral literature looking at change detection. In addition, such 

approaches have focused primarily on single-item memory for spatial information, and 

have not addressed multi-item maintenance and the process of change detection in a 

single, integrated neural system. In the present work, I described a new neural process 

model of VWM and change detection that addresses these limitations. In addition, I 

reported a series of experiments that test novel predictions of the proposed model. 

The basic functionality of the model was demonstrated in a series of exemplary 

simulations showing how the model can be used to capture different aspects of the 

change detection task. Recall that the first step in change detection involves the detection 

of items in the memory array and their successful consolidation in working memory. 

When inputs of sufficient strength and duration are presented to the model, the system 

goes through a detection instability, marked by an abrupt transition from a stable sub-

threshold state of activation to an above-threshold state where localized peaks of 

activation can be formed and, in some cases, maintained once the input has been 
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removed. Whether peaks of activation are maintained in the absence of input depends on 

the balance of excitatory and inhibitory inputs to the field. 

Excitatory recurrence in PF and laterally inhibitory input from Inhib can move PF 

into a self-stabilized state in response to input, where one or more peaks of activation are 

maintained as long as input is present. Once input is removed, however, PF quickly 

transitions back to the sub-threshold state, where activation at all field sites remains at 

baseline. In contrast, neurons in the WM layer, where excitatory recurrence is stronger, 

enter a self-sustaining state in response to input, where localized peaks of activation are 

maintained after the input is removed. Once a stable self-sustaining peak of activation is 

formed in the WM layer, the model can be said to have consolidated the information in 

WM. 

The self-sustained state persists unless systematic or random perturbations (e.g., 

noise) destabilize the peak. One source of systematic perturbation of particular interest 

here is the case where new inputs are presented to the model some time after the original 

inputs are consolidated in WM. Under these circumstances, several functions emerge, 

depending on the nature of the new inputs. When the new inputs are the same as the 

original inputs, neurons in PF coding for those features fail to enter the self-stabilized 

state. The failure to build a peak in PF occurs as a result of strong inhibitory recurrence 

from Inhib, whose activation is driven by the presence of self-sustaining peaks in WM. 

Thus, in this case, the self-sustained state is maintained in WM, and PF remains in the 

sub-threshold state. 

 In contrast, when a new input that is different than the original is presented to the 

model, patterns of activation in the model are changed depending on the metric similarity 

of the new and old inputs. When the new inputs are only slightly different than the 

original inputs, no new peak is built in PF, but the peaks in WM may be updated in a 

continuous fashion to reflect the new values. In contrast, when a new input is presented 

that is sufficiently metrically different from the original inputs, PF transitions to the self-
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stabilized state, signaling that a change has occurred, and working memory is updated to 

reflect the new value. If the new inputs are metrically similar to the original inputs, the 

original peak in WM is destabilized, and is replaced by the new value. However, when 

the new input is metrically very different than the original input, the new item may be 

added to the WM field without destabilizing the old peak. 

Thus, the proposed model realizes each of the basic components needed to 

capture performance in change detection tasks, from encoding and consolidation, to 

maintenance, to comparison and updating in response to changed inputs. Importantly, the 

model shows how these different functions can arise within an integrated, dynamic neural 

system. In addition, the model makes novel and counterintuitive predictions that were 

tested in a series of behavioral experiments. 

The first series of experiments used a change detection paradigm to test the 

prediction that metric-dependent interactions among nearby items in WM would lead to 

improved performance. This prediction arises as a result of laterally inhibitory 

interactions among nearby peaks in WM, which was shown to produce a sharpening of 

the range of local excitation associate with each peak. This, in turn, leads to a narrower 

and weaker inhibitory projection to PF. The consequence is that changes are easier to 

detect when one of the close items changes at test. This prediction was tested in three 

different experiments, two of which looked at WM for color, and one that looked at WM 

for orientation. In each case, the predicted enhancement effect was found. That is, 

performance in the change detection task was better for close versus far features. 

In a second series of experiments, I tested another prediction arising as a result of 

close metrics—that laterally inhibitory interactions will lead to mutual repulsion between 

nearby peaks in WM. This arises as a result of the fact that inhibition is stronger in-

between nearby peaks than it is on the “outer side” of each peak, which allows activation 

to grow more easily in a direction away from the other peak. Mutually repulsive 

interactions in the model produce a form of systematic bias in color memory that were 
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predicted to yield systematic distortions in color recall estimates for close colors. To test 

this possibility, I developed a cued color recall task where participants were shown one or 

more to-be-remembered colors, and after a short delay were asked to estimate one of the 

remembered colors by selecting it from a continuous color wheel. In the critical 

condition, participants were shown three colors, two of which were close in color and one 

that was far (i.e, unique). I predicted that estimates of the far color would not be 

systematically biased, and would not differ significantly from estimates of single colors. 

In contrast, I predicted that estimates of the two close colors would be systematically 

biased in opposite directions across the delay interval. This is exactly what was found. 

Thus, taken together, the obtained results suggest that metric-dependent interactions 

among items in VWM can have a measurable impact on performance in tasks used to 

probe working memory. 

Theoretical implications of the proposed 

model and empirical findings 

 What are the implications of these findings for current models of VWM and 

change detection? Recall from my discussion of behavioral models, that there is currently 

some disagreement within the literature regarding the nature of storage in VWM. On one 

hand, Zhang and Luck (in press) have argued that working memory stores a small 

number of discrete, fixed-resolution representations. A corollary of this view is the idea 

that items in VWM do not interact. On the other, Alvarez and Cavanagh (2004) have 

argued that working memory consists of a pool of resources that can be allocated flexibly 

depending on the demands of the task. Thus, when presented with more than a few items, 

observers can store either a small number of high-resolution representations, or a larger 

number of low-resolution representations. Are the model simulations and data reported 

here consistent with either of these proposals? 

The model and data are consistent with the proposal of Zhang & Luck (in press) 

in that working memory representations are realized in the model as individual localized 
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peaks of activation. In this sense, they are discrete entities, and the dynamical properties 

underlying their formation and maintenance could be thought of as the neural 

implementation of a slot-like form of working memory (see discussion in Luck, in press). 

Additionally, the simulations of Chapter 2 demonstrate clear capacity limits in the model. 

That is, on any given trial, the model builds and maintains a small number of peaks. 

When the number of items that need to be remembered increases beyond some point, one 

or more peaks fail to be maintained in WM. 

Other aspects of the model and the data, however, are at odds with this view. For 

instance, in the model, peaks interact with one another in a metric-dependent fashion. 

Across multiple experiments, such interactions were shown to have a measurable impact 

on performance in tasks used to probe VWM. Thus, although storage may be thought of 

as more-or-less discrete in the limit where the items being maintained are highly distinct, 

this is clearly not the case when similar items are simultaneously maintained. These 

findings do not support the notion of independence among representations in working 

memory, as proposed by Zhang and Luck (in press). Moreover, results showing lower 

response variance when participants estimated the Far versus Close targets in Experiment 

3B are not consistent with the proposal that slots in working memory have fixed 

resolution. 

The neural field model and empirical findings are also consistent with some 

aspects of the resource model of Alvarez and Cavanagh (2004). For instance, similarity 

among the items stored was shown to have an impact on performance, and, importantly, 

on the resolution of WM representations in Experiment 3B. This is consistent with the 

proposal that WM representations may vary in resolution. However, the basic “unit of 

storage” in the model consists of localized peaks of activation that can be compared to 

the notion of a discrete “slot” in working memory. That is, WM as implemented here 

does not store either a small number of high-resolution representations or a large number 



www.manaraa.com

 90 

of lower resolution representations, but stores a small number of representations that may 

vary in resolution as a function of their similarity to the other items in memory. 

At another level, the DFT is generally consistent with the view that working 

memory is an emergent property arising from interactions among neural populations (see, 

e.g., D’Esposito, 2005; Fuster, 2002; Postle, 2006). Additionally, the proposed model is 

consistent with neurodynamical accounts of maintenance in WM introduced earlier (e.g., 

Camperi & Wang, 2001). However, the present formulation moves to another level by 

providing a framework wherein such ideas can be directly tied to behavior in tasks used 

to explore WM. The basic strategy of this approach is to search for behavioral signatures 

of the neurodynamical processes proposed to underlie performance in such tasks. The 

metric-dependent sharpening and mutual repulsion among items in WM explored here 

represent two examples of this strategy. This close interplay between theoretical and 

empirical work makes it possible to connect a rigorous analysis of behavior with 

established neural principles. 

Neural plausibility of the proposed model 

 I have claimed that the model proposed here represents a neurally-plausible 

approach to VWM and change detection. In what sense is the neural field model 

grounded in neural principles? First of all, there is a demonstrated link between a 

population dynamics approach to cortical activation and patterns of activation in neural 

fields, as well as clear methods that can be used to map single-unit recordings onto 

dynamic population representations that can be directly compared to dynamic field 

models. For instance, Bastian et al. (Bastian et al., 1998; Bastian, Schöner, & Riehle, 

2003; Erlhagen et al., 1999) have used population coding techniques to compare single-

unit neural activity in motor cortex to time-dependent changes in neural activation in a 

dynamic field model of motor planning. The first step in making this comparison was to 

map the responses of neurons in motor cortex to basic stimuli and create a continuous 

field by ordering the neurons based on their “preferred” stimulus. This was followed by a 
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behavioral precuing task that probed predictions of a dynamic field theory of movement 

preparation (Erlhagen & Schöner, 2002). A similar procedure was used in studies of 

neuronal interaction in the cat visual cortex (Jancke et al., 1999). In both cases, the 

reported results suggested a robust relationship between predictions of dynamic field 

models and neural measures.  

Additionally, there is strong evidence from studies of cortical neurons for the 

basic local excitation / lateral inhibition form of neural interaction used in dynamic field 

models (Durstewitz et al., 2000). Moreover, because cortical neurons never project both 

excitatorily and inhibitorily onto targets, the inhibitory lateral interaction must be 

mediated through an ensemble of interneurons. We used a generic, two-layer formulation 

(Amari & Arbib, 1977) to realize this interaction where an inhibitory activation field 

receives input from an excitatory activation field and in turn inhibits that field.  

 Finally, the model presented here incorporates additional insights gained from 

studies of the layered structure of cortex. Specifically, the three-layered architecture was 

inspired by a cortical circuit model of the neocortex that was derived from decades of 

research investigating the cytoarchitecture of the neocortex (Douglas & Martin, 1998). 

This basic circuit model consists of two interacting populations of excitatory pyramidal 

cells distributed across different layers of cortex, coupled to a single population of 

inhibitory neurons. Although the layers of the model do not map directly on to specific 

cortical layers, the basic structure and patterns of connectivity within the model are 

consistent with know principles of cortical organization. 

Future directions 

 The work presented here extends the DFT of spatial cognition to address working 

memory for metric feature dimensions and the process of changed detection. An 

important future direction for this approach will involve linking the model described here 

back to the rich, embodied spatial system it grew out of. In the present work, working 

memory for metric features was realized using neural fields where activation was defined 



www.manaraa.com

 92 

along a single dimension (e.g., color). That is, the spatial locations of the targets were not 

included in the neural representation of the target features. Although the non-spatial 

nature of neural selectivity in the ventral stream is often highlighted, cortical feature 

maps in these areas are typically spatially organized in addition to being organized 

according to their preferred features (Op De Beeck & Vogels, 2000). Thus, a 

straightforward way to bring space into the picture sketched thus far is to simply add a 

spatial dimension to the model, forming a two-dimensional feature-space field. With this 

addition, localized peaks of activation within a field now represent both the feature value 

present in the environment and its spatial location. In the context of the model of change 

detection described above, this has the added benefit that when a change is detected at 

test, the resulting peak in PF signals the changed feature value as well as its spatial 

location (see Johnson, Spencer, & Schöner, in press). Such information could be used to 

direct spatial attention or the eyes to the location of the change, in keeping with 

behavioral and neural findings (Hyun et al., in press; Pessoa & Ungerleider, 2004). 

In addition to representing information about particular feature-space pairings, 

simple distributed object representations can be achieved via spatial coupling among 

feature-space fields tuned to different features. In this case, features belonging to the 

same object enter into mutually-supportive interactions as a consequence of their shared 

location, and whole objects are represented as distributed patterns of activation across 

multiple linked feature maps. For example, the neural representation of a red, 

horizontally oriented bar would be represented by peaks of activation in color-space and 

orientation-space fields that are positioned at the same location along the spatial 

dimension of the field (Buss & Spencer, 2008; Johnson, Spencer et al., in press). 

The use of feature-space fields to represent particular pairings of features and 

locations represents a neurally-plausible means of achieving simple distributed object 

representations. However, another property of spatial coding in the ventral stream can 

lead to problems when more than one multi-feature object needs to be represented. As 
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one progresses through the ventral stream, there is a steady, sometimes dramatic increase 

in receptive field sizes and an accompanying decrease in the spatial resolution of 

receptive fields for individual neurons (Desimone & Gross, 1979; Gross, Rocha-Miranda, 

& Bender, 1972). Additionally, although feature selectivity becomes more complex at 

higher levels of the visual system, the individual features of complex objects (e.g., color, 

form, size, and direction of motion) are coded in a distributed manner through the parallel 

activation of large numbers of neurons (Fujita, Tanaka, Ito, & Cheng, 1992; Komatsu & 

Ideura, 1993; Llinás & Paré, 1996). Although this type of encoding can be quite efficient, 

it can also lead to substantial problems when multiple objects are presented 

simultaneously, as in visual search experiments and most real-world visual tasks. For 

example, when two or more objects are presented simultaneously, the individual features 

making up the objects are coded in partially independent neural populations with 

overlapping spatial receptive fields. As a result, it can be difficult to determine which 

features belong together as attributes of a single object, an example of the binding 

problem in vision (Damasio, 1989; von der Malsburg, 1981, 1995). 

One of the strongest sources of evidence suggesting that this is a real problem for 

the visual system is the finding that, under certain circumstances, the features of objects 

can be miscombined in normal perception. For example, in a series of experiments 

reported by Treisman and Schmidt (1982), participants were briefly shown multi-element 

displays of colored letters. In some cases, the colors and letters were perceived correctly 

but in the wrong combination. For example, a participant could be presented with a 

display containing a red horizontal line and a green vertical line, and incorrectly report 

seeing a red vertical and a green horizontal line (see also, Ashby, Prinzmetal, Ivry, & 

Maddox, 1996; Cohen & Ivry, 1989; Prinzmetal, 1981). 

A likely cause of such failures is uncertainty about the spatial locations of the 

individual features making up objects. In the framework described here, this problem can 

be solved by coupling separate feature-space fields to a single spatial working memory 
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(SWM) field that maintains precise information about spatial location. The presence of 

additional spatial input serves to “pull” activation into the right position along the spatial 

dimension, keeping peaks aligned in each of the feature-space fields and clarifying which 

features belong to which objects (Johnson, Spencer et al., in press). The peaks of 

activation in SWM, then, indicate the number of items actually present in the display. 

Conclusion 

 In conclusion, I contend that the three-layer neural field architecture described 

here provides a useful framework for thinking about how elementary perceptual and 

cognitive functions can emerge from the coordinated activity of an integrated, dynamic 

neural system. The proposed model captures each of the primary components required in 

simple visual comparison tasks such as change detection and is consistent with general 

principles of neural function. In addition, the proposed model makes novel and 

counterintuitive predictions that were tested in behavioral experiments. Thus, I was able 

to connect a rigorous analysis of behavior to established neural principles. Importantly, 

this thesis shows that we do not have to forge this link using the concepts of information 

processing. Rather than partitioning the continuous flow of time into discrete stages, I 

showed how a single system could capture behavioral performance and generate novel 

behavioral predictions that run counter to existing theories. This retains the fundamental 

strengths of cognitive psychology but within a dynamical systems framework. 

An important future direction for this approach will be to integrate the framework 

described here with the robust, embodied theory of spatial cognition that it grew out of. 
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